Show simple item record

A Biologically Active Surface Enzyme Assembly that Attenuates Thrombus Formation

dc.contributor.authorQu, Zhengen_US
dc.contributor.authorMuthukrishnan, Sharmilaen_US
dc.contributor.authorUrlam, Murali K.en_US
dc.contributor.authorHaller, Carolyn A.en_US
dc.contributor.authorJordan, Sumanas W.en_US
dc.contributor.authorKumar, Vivek A.en_US
dc.contributor.authorMarzec, Ulla M.en_US
dc.contributor.authorElkasabi, Yaseen Mohameden_US
dc.contributor.authorLahann, Joergen_US
dc.contributor.authorHanson, Stephen R.en_US
dc.contributor.authorChaikof, Elliot L.en_US
dc.date.accessioned2012-01-05T22:05:45Z
dc.date.available2013-02-01T20:26:12Zen_US
dc.date.issued2011-12-20en_US
dc.identifier.citationQu, Zheng; Muthukrishnan, Sharmila; Urlam, Murali K.; Haller, Carolyn A.; Jordan, Sumanas W.; Kumar, Vivek A.; Marzec, Ulla M.; Elkasabi, Yaseen; Lahann, Joerg; Hanson, Stephen R.; Chaikof, Elliot L. (2011). "A Biologically Active Surface Enzyme Assembly that Attenuates Thrombus Formation." Advanced Functional Materials 21(24): 4736-4743. <http://hdl.handle.net/2027.42/89494>en_US
dc.identifier.issn1616-301Xen_US
dc.identifier.issn1616-3028en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/89494
dc.description.abstractActivation of hemostatic pathways by blood‐contacting materials remains a major hurdle in the development of clinically durable artificial organs and implantable devices. Here, it is postulated that surface‐induced thrombosis may be attenuated by the reconstitution onto blood contacting surfaces of bioactive enzymes that regulate the production of thrombin, a central mediator of both coagulation and platelet activation cascades. Thrombomodulin (TM), a transmembrane protein expressed by endothelial cells, is an established negative regulator of thrombin generation in the circulatory system. Traditional techniques to covalently immobilize enzymes on solid supports may modify residues contained within or near the catalytic site, thus reducing the bioactivity of surface enzyme assemblies. In this report, a molecular engineering and bioorthogonal chemistry approach to site‐specifically immobilize a biologically active recombinant human TM fragment onto the luminal surface of small diameter prosthetic vascular grafts is presented. Bioactivity and biostability of TM modified grafts is confirmed in vitro and the capacity of modified grafts to reduce platelet activation is demonstrated using a non‐human primate model. These studies indicate that molecularly engineered interfaces that display TM actively limit surface‐induced thrombus formation. A biologically active thrombomodulin surface assembly to limit interfacial thrombin production was generated on the lumen of clinical ePTFE vascular grafts by site‐specific covalent immobilization. Therapeutic capacity of this biomimetic surface engineering approach to attenuate thrombus formation was demonstrated in a clinically relevant in vivo model of prosthetic graft thrombosis.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherBiomedical Applicationsen_US
dc.subject.otherBlood Compatibilityen_US
dc.subject.otherThrombosisen_US
dc.subject.otherVascular Graften_US
dc.subject.otherStaudinger Ligationen_US
dc.titleA Biologically Active Surface Enzyme Assembly that Attenuates Thrombus Formationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEngineering (General)en_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, and the Wyss Institute of Biologically Inspired, Engineering of Harvard University, Boston, MA 02115, USAen_US
dc.contributor.affiliationotherDepartments of Biomedical Engineering and Surgery, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USAen_US
dc.contributor.affiliationotherOregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USAen_US
dc.contributor.affiliationotherDepartment of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, and the Wyss Institute of Biologically Inspired, Engineering of Harvard University, Boston, MA 02115, USA.en_US
dc.identifier.pmid23532366en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/89494/1/4736_ftp.pdf
dc.identifier.doi10.1002/adfm.201101687en_US
dc.identifier.sourceAdvanced Functional Materialsen_US
dc.identifier.citedreferenceY. Ikada, Biomaterials 1994, 15, 725.en_US
dc.identifier.citedreferenceA. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Nat. Mater. 2009, 8, 543.en_US
dc.identifier.citedreferenceB. D. Ratner, Biomaterials 2007, 28, 5144.en_US
dc.identifier.citedreferenceS. W. Jordan, E. L. Chaikof, J. Vasc. Surg. 2007, 45 Suppl A, A104.en_US
dc.identifier.citedreferenceM. B. Gorbet, M. V. Sefton, Biomaterials 2004, 25, 5681.en_US
dc.identifier.citedreferenceB. Furie, B. C. Furie, N. Engl. J. Med. 2008, 359, 938.en_US
dc.identifier.citedreferenceZ. Qu, E. L. Chaikof, Curr. Opin. Immunol. 2010, 22, 634.en_US
dc.identifier.citedreferenceJ. M. Anderson, A. Rodriguez, D. T. Chang, Semin. Immunol. 2008, 20, 86.en_US
dc.identifier.citedreferenceV. L. Gott, J. D. Whiffen, R. C. Dutton, Science 1963, 142, 1297.en_US
dc.identifier.citedreferenceA. I. de Agostini, S. C. Watkins, H. S. Slayter, H. Youssoufian, R. D. Rosenberg, J. Cell Biol. 1990, 111, 1293.en_US
dc.identifier.citedreferenceP. C. Liaw, D. L. Becker, A. R. Stafford, J. C. Fredenburgh, J. I. Weitz, J. Biol. Chem. 2001, 276, 20959.en_US
dc.identifier.citedreferenceM. D. Phaneuf, S. A. Berceli, M. J. Bide, W. C. Quist, F. W. LoGerfo, Biomaterials 1997, 18, 755.en_US
dc.identifier.citedreferenceB. Seifert, P. Romaniuk, T. Groth, Biomaterials 1997, 18, 1495.en_US
dc.identifier.citedreferenceJ. Lahann, D. Klee, W. Pluester, H. Hoecker, Biomaterials 2001, 22, 817.en_US
dc.identifier.citedreferenceC. K. Hashi, N. Derugin, R. R. Janairo, R. Lee, D. Schultz, J. Lotz, S. Li, Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1621.en_US
dc.identifier.citedreferenceS. C. Freitas, M. A. Barbosa, M. C. Martins, Biomaterials 2010, 31, 3772.en_US
dc.identifier.citedreferenceY. Ito, L. S. Liu, R. Matsuo, Y. Imanishi, J. Biomed. Mater. Res. 1992, 26, 1065.en_US
dc.identifier.citedreferenceC. Salvagnini, S. Gharbi, T. Boxus, J. Marchand‐Brynaert, Eur. J. Med. Chem. 2007, 42, 37.en_US
dc.identifier.citedreferenceM. F. Gouzy, C. Sperling, K. Salchert, T. Pompe, U. Streller, P. Uhlmann, C. Rauwolf, F. Simon, F. Bohme, B. Voit, C. Werner, Biomaterials 2004, 25, 3493.en_US
dc.identifier.citedreferenceC. T. Esmon, Biochim. Biophys. Acta 2000, 1477, 349.en_US
dc.identifier.citedreferenceC. T. Esmon, J. Biol. Chem. 1989, 264, 4743.en_US
dc.identifier.citedreferenceJ. M. Goddard, J. H. Hotchkiss, Prog. Polym. Sci. 2007, 32, 698.en_US
dc.identifier.citedreferenceA. Kishida, Y. Ueno, I. Maruyama, M. Akashi, Biomaterials 1994, 15, 1170.en_US
dc.identifier.citedreferenceA. Kishida, Y. Ueno, I. Maruyama, M. Akashi, ASAIO J. 1994, 40, M840.en_US
dc.identifier.citedreferenceC. Sperling, U. Konig, G. Hermel, C. Werner, M. Muller, F. Simon, K. Grundke, H. J. Jacobasch, V. N. Vasilets, Y. Ikada, J. Mater. Sci. Mater. Med. 1997, 8, 789.en_US
dc.identifier.citedreferenceV. N. Vasilets, G. Hermel, U. Konig, C. Werner, M. Muller, F. Simon, K. Grundke, Y. Ikada, H. J. Jacobasch, Biomaterials 1997, 18, 1139.en_US
dc.identifier.citedreferenceJ. M. Li, M. J. Singh, P. R. Nelson, G. M. Hendricks, M. Itani, M. J. Rohrer, B. S. Cutler, J. Surg. Res. 2002, 105, 200.en_US
dc.identifier.citedreferenceC. Sperling, K. Salchert, U. Streller, C. Werner, Biomaterials 2004, 25, 5101.en_US
dc.identifier.citedreferenceB. Wu, B. Gerlitz, B. W. Grinnell, M. E. Meyerhoff, Biomaterials 2007, 28, 4047.en_US
dc.identifier.citedreferenceH. Y. Yeh, J. C. Lin, J. Biomater. Sci. Polym. Ed. 2009, 20, 807.en_US
dc.identifier.citedreferenceP. Jonkheijm, D. Weinrich, H. Schroder, C. M. Niemeyer, H. Waldmann, Angew. Chem. Int. Ed. Engl. 2008, 47, 9618.en_US
dc.identifier.citedreferenceE. M. Sletten, C. R. Bertozzi, Angew. Chem. Int. Ed. Engl. 2009, 48, 6974.en_US
dc.identifier.citedreferenceA. Watzke, M. Kohn, M. Gutierrez‐Rodriguez, R. Wacker, H. Schroder, R. Breinbauer, J. Kuhlmann, K. Alexandrov, C. M. Niemeyer, R. S. Goody, H. Waldmann, Angew. Chem. Int. Ed. Engl. 2006, 45, 1408.en_US
dc.identifier.citedreferenceJ. Kalia, N. L. Abbott, R. T. Raines, Bioconjug. Chem. 2007, 18, 1064.en_US
dc.identifier.citedreferenceR. David, M. P. Richter, A. G. Beck‐Sickinger, Eur. J. Biochem. 2004, 271, 663.en_US
dc.identifier.citedreferenceK. Suzuki, H. Kusumoto, Y. Deyashiki, J. Nishioka, I. Maruyama, M. Zushi, S. Kawahara, G. Honda, S. Yamamoto, S. Horiguchi, EMBO J. 1987, 6, 1891.en_US
dc.identifier.citedreferenceM. B. Soellner, K. A. Dickson, B. L. Nilsson, R. T. Raines, J. Am. Chem. Soc. 2003, 125, 11790.en_US
dc.identifier.citedreferenceC. S. Cazalis, C. A. Haller, L. Sease‐Cargo, E. L. Chaikof, Bioconjug. Chem. 2004, 15, 1005.en_US
dc.identifier.citedreferenceJ. F. Parkinson, M. Nagashima, I. Kuhn, J. Leonard, J. Morser, Biochem. Biophys. Res. Commun. 1992, 185, 567.en_US
dc.identifier.citedreferenceK. L. Kiick, E. Saxon, D. A. Tirrell, C. R. Bertozzi, Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 19.en_US
dc.identifier.citedreferenceT. R. Dargaville, G. A. George, D. J. T. Hill, A. K. Whittaker, Prog. Polym. Sci. 2003, 28, 1355.en_US
dc.identifier.citedreferenceD. Klee, H. Hocker, Polymers for biomedical applications: Improvement of the interface compatibility, Vol. 149, Springer‐Verlag Berlin, Berlin 1999.en_US
dc.identifier.citedreferenceN. M. K. Lamba, K. A. Woodhouse, S. L. Cooper, M. D. Lelah, Polyurethanes in biomedical applications, CRC Press, Boca Raton 1998.en_US
dc.identifier.citedreferenceS. W. Jordan, K. M. Faucher, J. M. Caves, R. P. Apkarian, S. S. Rele, X. L. Sun, S. R. Hanson, E. L. Chaikof, Biomaterials 2006, 27, 3473.en_US
dc.identifier.citedreferenceC. Freijlarsson, B. Wesslen, J. Appl. Polym. Sci. 1993, 50, 345.en_US
dc.identifier.citedreferenceE. Saxon, J. I. Armstrong, C. R. Bertozzi, Org. Lett. 2000, 2, 2141.en_US
dc.identifier.citedreferenceJ. W. Weisel, C. Nagaswami, T. A. Young, D. R. Light, J. Biol. Chem. 1996, 271, 3 1485.en_US
dc.identifier.citedreferenceY. Cadroy, J. M. Maraganore, S. R. Hanson, L. A. Harker, Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 1177.en_US
dc.identifier.citedreferenceS. R. Hanson, J. H. Griffin, L. A. Harker, A. B. Kelly, C. T. Esmon, A. Gruber, J. Clin. Invest. 1993, 92, 2003.en_US
dc.identifier.citedreferenceS. R. Hanson, K. S. Sakariassen, Am. Heart J. 1998, 135, S132.en_US
dc.identifier.citedreferenceM. J. Byrom, P. G. Bannon, G. H. White, M. K. Ng, J. Vasc. Surg. 2010.en_US
dc.identifier.citedreferenceS. W. Jordan, C. A. Haller, R. E. Sallach, R. P. Apkarian, S. R. Hanson, E. L. Chaikof, Biomaterials 2007, 28, 1191.en_US
dc.identifier.citedreferenceC. A. McNamara, I. J. Sarembock, L. W. Gimple, J. W. Fenton, S. R. Coughlin, G. K. Owens, J. Clin. Invest. 1993, 91, 94.en_US
dc.identifier.citedreferenceI. Chen, A. Y. Ting, Curr. Opin. Biotechnol. 2005, 16, 35.en_US
dc.identifier.citedreferenceC. P. R. Hackenberger, D. Schwarzer, Angew. Chem. Int. Ed. Engl. 2008, 47, 10030.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.