A Biologically Active Surface Enzyme Assembly that Attenuates Thrombus Formation
dc.contributor.author | Qu, Zheng | en_US |
dc.contributor.author | Muthukrishnan, Sharmila | en_US |
dc.contributor.author | Urlam, Murali K. | en_US |
dc.contributor.author | Haller, Carolyn A. | en_US |
dc.contributor.author | Jordan, Sumanas W. | en_US |
dc.contributor.author | Kumar, Vivek A. | en_US |
dc.contributor.author | Marzec, Ulla M. | en_US |
dc.contributor.author | Elkasabi, Yaseen Mohamed | en_US |
dc.contributor.author | Lahann, Joerg | en_US |
dc.contributor.author | Hanson, Stephen R. | en_US |
dc.contributor.author | Chaikof, Elliot L. | en_US |
dc.date.accessioned | 2012-01-05T22:05:45Z | |
dc.date.available | 2013-02-01T20:26:12Z | en_US |
dc.date.issued | 2011-12-20 | en_US |
dc.identifier.citation | Qu, Zheng; Muthukrishnan, Sharmila; Urlam, Murali K.; Haller, Carolyn A.; Jordan, Sumanas W.; Kumar, Vivek A.; Marzec, Ulla M.; Elkasabi, Yaseen; Lahann, Joerg; Hanson, Stephen R.; Chaikof, Elliot L. (2011). "A Biologically Active Surface Enzyme Assembly that Attenuates Thrombus Formation." Advanced Functional Materials 21(24): 4736-4743. <http://hdl.handle.net/2027.42/89494> | en_US |
dc.identifier.issn | 1616-301X | en_US |
dc.identifier.issn | 1616-3028 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/89494 | |
dc.description.abstract | Activation of hemostatic pathways by blood‐contacting materials remains a major hurdle in the development of clinically durable artificial organs and implantable devices. Here, it is postulated that surface‐induced thrombosis may be attenuated by the reconstitution onto blood contacting surfaces of bioactive enzymes that regulate the production of thrombin, a central mediator of both coagulation and platelet activation cascades. Thrombomodulin (TM), a transmembrane protein expressed by endothelial cells, is an established negative regulator of thrombin generation in the circulatory system. Traditional techniques to covalently immobilize enzymes on solid supports may modify residues contained within or near the catalytic site, thus reducing the bioactivity of surface enzyme assemblies. In this report, a molecular engineering and bioorthogonal chemistry approach to site‐specifically immobilize a biologically active recombinant human TM fragment onto the luminal surface of small diameter prosthetic vascular grafts is presented. Bioactivity and biostability of TM modified grafts is confirmed in vitro and the capacity of modified grafts to reduce platelet activation is demonstrated using a non‐human primate model. These studies indicate that molecularly engineered interfaces that display TM actively limit surface‐induced thrombus formation. A biologically active thrombomodulin surface assembly to limit interfacial thrombin production was generated on the lumen of clinical ePTFE vascular grafts by site‐specific covalent immobilization. Therapeutic capacity of this biomimetic surface engineering approach to attenuate thrombus formation was demonstrated in a clinically relevant in vivo model of prosthetic graft thrombosis. | en_US |
dc.publisher | WILEY‐VCH Verlag | en_US |
dc.subject.other | Biomedical Applications | en_US |
dc.subject.other | Blood Compatibility | en_US |
dc.subject.other | Thrombosis | en_US |
dc.subject.other | Vascular Graft | en_US |
dc.subject.other | Staudinger Ligation | en_US |
dc.title | A Biologically Active Surface Enzyme Assembly that Attenuates Thrombus Formation | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Engineering (General) | en_US |
dc.subject.hlbsecondlevel | Materials Science and Engineering | en_US |
dc.subject.hlbtoplevel | Engineering | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA | en_US |
dc.contributor.affiliationother | Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, and the Wyss Institute of Biologically Inspired, Engineering of Harvard University, Boston, MA 02115, USA | en_US |
dc.contributor.affiliationother | Departments of Biomedical Engineering and Surgery, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA | en_US |
dc.contributor.affiliationother | Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA | en_US |
dc.contributor.affiliationother | Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, and the Wyss Institute of Biologically Inspired, Engineering of Harvard University, Boston, MA 02115, USA. | en_US |
dc.identifier.pmid | 23532366 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/89494/1/4736_ftp.pdf | |
dc.identifier.doi | 10.1002/adfm.201101687 | en_US |
dc.identifier.source | Advanced Functional Materials | en_US |
dc.identifier.citedreference | Y. Ikada, Biomaterials 1994, 15, 725. | en_US |
dc.identifier.citedreference | A. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Nat. Mater. 2009, 8, 543. | en_US |
dc.identifier.citedreference | B. D. Ratner, Biomaterials 2007, 28, 5144. | en_US |
dc.identifier.citedreference | S. W. Jordan, E. L. Chaikof, J. Vasc. Surg. 2007, 45 Suppl A, A104. | en_US |
dc.identifier.citedreference | M. B. Gorbet, M. V. Sefton, Biomaterials 2004, 25, 5681. | en_US |
dc.identifier.citedreference | B. Furie, B. C. Furie, N. Engl. J. Med. 2008, 359, 938. | en_US |
dc.identifier.citedreference | Z. Qu, E. L. Chaikof, Curr. Opin. Immunol. 2010, 22, 634. | en_US |
dc.identifier.citedreference | J. M. Anderson, A. Rodriguez, D. T. Chang, Semin. Immunol. 2008, 20, 86. | en_US |
dc.identifier.citedreference | V. L. Gott, J. D. Whiffen, R. C. Dutton, Science 1963, 142, 1297. | en_US |
dc.identifier.citedreference | A. I. de Agostini, S. C. Watkins, H. S. Slayter, H. Youssoufian, R. D. Rosenberg, J. Cell Biol. 1990, 111, 1293. | en_US |
dc.identifier.citedreference | P. C. Liaw, D. L. Becker, A. R. Stafford, J. C. Fredenburgh, J. I. Weitz, J. Biol. Chem. 2001, 276, 20959. | en_US |
dc.identifier.citedreference | M. D. Phaneuf, S. A. Berceli, M. J. Bide, W. C. Quist, F. W. LoGerfo, Biomaterials 1997, 18, 755. | en_US |
dc.identifier.citedreference | B. Seifert, P. Romaniuk, T. Groth, Biomaterials 1997, 18, 1495. | en_US |
dc.identifier.citedreference | J. Lahann, D. Klee, W. Pluester, H. Hoecker, Biomaterials 2001, 22, 817. | en_US |
dc.identifier.citedreference | C. K. Hashi, N. Derugin, R. R. Janairo, R. Lee, D. Schultz, J. Lotz, S. Li, Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1621. | en_US |
dc.identifier.citedreference | S. C. Freitas, M. A. Barbosa, M. C. Martins, Biomaterials 2010, 31, 3772. | en_US |
dc.identifier.citedreference | Y. Ito, L. S. Liu, R. Matsuo, Y. Imanishi, J. Biomed. Mater. Res. 1992, 26, 1065. | en_US |
dc.identifier.citedreference | C. Salvagnini, S. Gharbi, T. Boxus, J. Marchand‐Brynaert, Eur. J. Med. Chem. 2007, 42, 37. | en_US |
dc.identifier.citedreference | M. F. Gouzy, C. Sperling, K. Salchert, T. Pompe, U. Streller, P. Uhlmann, C. Rauwolf, F. Simon, F. Bohme, B. Voit, C. Werner, Biomaterials 2004, 25, 3493. | en_US |
dc.identifier.citedreference | C. T. Esmon, Biochim. Biophys. Acta 2000, 1477, 349. | en_US |
dc.identifier.citedreference | C. T. Esmon, J. Biol. Chem. 1989, 264, 4743. | en_US |
dc.identifier.citedreference | J. M. Goddard, J. H. Hotchkiss, Prog. Polym. Sci. 2007, 32, 698. | en_US |
dc.identifier.citedreference | A. Kishida, Y. Ueno, I. Maruyama, M. Akashi, Biomaterials 1994, 15, 1170. | en_US |
dc.identifier.citedreference | A. Kishida, Y. Ueno, I. Maruyama, M. Akashi, ASAIO J. 1994, 40, M840. | en_US |
dc.identifier.citedreference | C. Sperling, U. Konig, G. Hermel, C. Werner, M. Muller, F. Simon, K. Grundke, H. J. Jacobasch, V. N. Vasilets, Y. Ikada, J. Mater. Sci. Mater. Med. 1997, 8, 789. | en_US |
dc.identifier.citedreference | V. N. Vasilets, G. Hermel, U. Konig, C. Werner, M. Muller, F. Simon, K. Grundke, Y. Ikada, H. J. Jacobasch, Biomaterials 1997, 18, 1139. | en_US |
dc.identifier.citedreference | J. M. Li, M. J. Singh, P. R. Nelson, G. M. Hendricks, M. Itani, M. J. Rohrer, B. S. Cutler, J. Surg. Res. 2002, 105, 200. | en_US |
dc.identifier.citedreference | C. Sperling, K. Salchert, U. Streller, C. Werner, Biomaterials 2004, 25, 5101. | en_US |
dc.identifier.citedreference | B. Wu, B. Gerlitz, B. W. Grinnell, M. E. Meyerhoff, Biomaterials 2007, 28, 4047. | en_US |
dc.identifier.citedreference | H. Y. Yeh, J. C. Lin, J. Biomater. Sci. Polym. Ed. 2009, 20, 807. | en_US |
dc.identifier.citedreference | P. Jonkheijm, D. Weinrich, H. Schroder, C. M. Niemeyer, H. Waldmann, Angew. Chem. Int. Ed. Engl. 2008, 47, 9618. | en_US |
dc.identifier.citedreference | E. M. Sletten, C. R. Bertozzi, Angew. Chem. Int. Ed. Engl. 2009, 48, 6974. | en_US |
dc.identifier.citedreference | A. Watzke, M. Kohn, M. Gutierrez‐Rodriguez, R. Wacker, H. Schroder, R. Breinbauer, J. Kuhlmann, K. Alexandrov, C. M. Niemeyer, R. S. Goody, H. Waldmann, Angew. Chem. Int. Ed. Engl. 2006, 45, 1408. | en_US |
dc.identifier.citedreference | J. Kalia, N. L. Abbott, R. T. Raines, Bioconjug. Chem. 2007, 18, 1064. | en_US |
dc.identifier.citedreference | R. David, M. P. Richter, A. G. Beck‐Sickinger, Eur. J. Biochem. 2004, 271, 663. | en_US |
dc.identifier.citedreference | K. Suzuki, H. Kusumoto, Y. Deyashiki, J. Nishioka, I. Maruyama, M. Zushi, S. Kawahara, G. Honda, S. Yamamoto, S. Horiguchi, EMBO J. 1987, 6, 1891. | en_US |
dc.identifier.citedreference | M. B. Soellner, K. A. Dickson, B. L. Nilsson, R. T. Raines, J. Am. Chem. Soc. 2003, 125, 11790. | en_US |
dc.identifier.citedreference | C. S. Cazalis, C. A. Haller, L. Sease‐Cargo, E. L. Chaikof, Bioconjug. Chem. 2004, 15, 1005. | en_US |
dc.identifier.citedreference | J. F. Parkinson, M. Nagashima, I. Kuhn, J. Leonard, J. Morser, Biochem. Biophys. Res. Commun. 1992, 185, 567. | en_US |
dc.identifier.citedreference | K. L. Kiick, E. Saxon, D. A. Tirrell, C. R. Bertozzi, Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 19. | en_US |
dc.identifier.citedreference | T. R. Dargaville, G. A. George, D. J. T. Hill, A. K. Whittaker, Prog. Polym. Sci. 2003, 28, 1355. | en_US |
dc.identifier.citedreference | D. Klee, H. Hocker, Polymers for biomedical applications: Improvement of the interface compatibility, Vol. 149, Springer‐Verlag Berlin, Berlin 1999. | en_US |
dc.identifier.citedreference | N. M. K. Lamba, K. A. Woodhouse, S. L. Cooper, M. D. Lelah, Polyurethanes in biomedical applications, CRC Press, Boca Raton 1998. | en_US |
dc.identifier.citedreference | S. W. Jordan, K. M. Faucher, J. M. Caves, R. P. Apkarian, S. S. Rele, X. L. Sun, S. R. Hanson, E. L. Chaikof, Biomaterials 2006, 27, 3473. | en_US |
dc.identifier.citedreference | C. Freijlarsson, B. Wesslen, J. Appl. Polym. Sci. 1993, 50, 345. | en_US |
dc.identifier.citedreference | E. Saxon, J. I. Armstrong, C. R. Bertozzi, Org. Lett. 2000, 2, 2141. | en_US |
dc.identifier.citedreference | J. W. Weisel, C. Nagaswami, T. A. Young, D. R. Light, J. Biol. Chem. 1996, 271, 3 1485. | en_US |
dc.identifier.citedreference | Y. Cadroy, J. M. Maraganore, S. R. Hanson, L. A. Harker, Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 1177. | en_US |
dc.identifier.citedreference | S. R. Hanson, J. H. Griffin, L. A. Harker, A. B. Kelly, C. T. Esmon, A. Gruber, J. Clin. Invest. 1993, 92, 2003. | en_US |
dc.identifier.citedreference | S. R. Hanson, K. S. Sakariassen, Am. Heart J. 1998, 135, S132. | en_US |
dc.identifier.citedreference | M. J. Byrom, P. G. Bannon, G. H. White, M. K. Ng, J. Vasc. Surg. 2010. | en_US |
dc.identifier.citedreference | S. W. Jordan, C. A. Haller, R. E. Sallach, R. P. Apkarian, S. R. Hanson, E. L. Chaikof, Biomaterials 2007, 28, 1191. | en_US |
dc.identifier.citedreference | C. A. McNamara, I. J. Sarembock, L. W. Gimple, J. W. Fenton, S. R. Coughlin, G. K. Owens, J. Clin. Invest. 1993, 91, 94. | en_US |
dc.identifier.citedreference | I. Chen, A. Y. Ting, Curr. Opin. Biotechnol. 2005, 16, 35. | en_US |
dc.identifier.citedreference | C. P. R. Hackenberger, D. Schwarzer, Angew. Chem. Int. Ed. Engl. 2008, 47, 10030. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.