Show simple item record

Prots: A fragment based protein thermo‐stability potential

dc.contributor.authorLi, Yunqien_US
dc.contributor.authorZhang, Jianen_US
dc.contributor.authorTai, Daviden_US
dc.contributor.authorRussell Middaugh, C.en_US
dc.contributor.authorZhang, Yangen_US
dc.contributor.authorFang, Jianwenen_US
dc.date.accessioned2012-01-05T22:06:33Z
dc.date.available2013-03-04T15:29:55Zen_US
dc.date.issued2012-01en_US
dc.identifier.citationLi, Yunqi; Zhang, Jian; Tai, David; Russell Middaugh, C.; Zhang, Yang; Fang, Jianwen (2012). "Prots: A fragment based protein thermo‐stability potential." Proteins: Structure, Function, and Bioinformatics 80(1): 81-92. <http://hdl.handle.net/2027.42/89526>en_US
dc.identifier.issn0887-3585en_US
dc.identifier.issn1097-0134en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/89526
dc.description.abstractDesigning proteins with enhanced thermo‐stability has been a main focus of protein engineering because of its theoretical and practical significance. Despite extensive studies in the past years, a general strategy for stabilizing proteins still remains elusive. Thus effective and robust computational algorithms for designing thermo‐stable proteins are in critical demand. Here we report PROTS, a sequential and structural four‐residue fragment based protein thermo‐stability potential. PROTS is derived from a nonredundant representative collection of thousands of thermophilic and mesophilic protein structures and a large set of point mutations with experimentally determined changes of melting temperatures. To the best of our knowledge, PROTS is the first protein stability predictor based on integrated analysis and mining of these two types of data. Besides conventional cross validation and blind testing, we introduce hypothetical reverse mutations as a means of testing the robustness of protein thermo‐stability predictors. In all tests, PROTS demonstrates the ability to reliably predict mutation induced thermo‐stability changes as well as classify thermophilic and mesophilic proteins. In addition, this white‐box predictor allows easy interpretation of the factors that influence mutation induced protein stability changes at the residue level. Proteins 2012; © 2011 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherProtein Stabilityen_US
dc.subject.otherThermophilicen_US
dc.subject.otherPredictionen_US
dc.subject.otherDataminingen_US
dc.subject.otherThermostability Potentialen_US
dc.titleProts: A fragment based protein thermo‐stability potentialen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCenter for Computational Medicine and Bioinformatics, the University of Michigan Medical School, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherApplied Bioinformatics Laboratory, the University of Kansas, Lawrence, Kansas 66047en_US
dc.contributor.affiliationotherDepartment of Pharmaceutical Chemistry, the University of Kansas, Lawrence, Kansas 66047en_US
dc.contributor.affiliationotherApplied Bioinformatics Laboratory, the University of Kansas, 2034 Becker Dr., Lawrence, KS 66047en_US
dc.identifier.pmid21976375en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/89526/1/23163_ftp.pdf
dc.identifier.doi10.1002/prot.23163en_US
dc.identifier.sourceProteins: Structure, Function, and Bioinformaticsen_US
dc.identifier.citedreferenceDahiyat BI. In silico design for protein stabilization. Curr Opin Biotech 1999; 10: 387 – 390.en_US
dc.identifier.citedreferenceKorkegian A, Black ME, Baker D, Stoddard BL. Computational thermostabilization of an enzyme. Science 2005; 308: 857 – 860.en_US
dc.identifier.citedreferenceLazar GA, Marshall SA, Plecs JJ, Mayo SL, Desjarlais JR. Designing proteins for therapeutic applications. Curr Opin Struct Biol 2003; 13: 513 – 518.en_US
dc.identifier.citedreferenceSchweiker KL, Makhatadze GI. Protein stabilization by the rational design of surface charge‐charge interactions. Methods Mol Biology 2009; 490: 261 – 283.en_US
dc.identifier.citedreferenceSterner R, Liebl W. Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol 2001; 36: 39 – 106.en_US
dc.identifier.citedreferenceChennamsetty N, Voynov V, Kayser V, Helk B, Trout BL. Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci USA 2009; 106: 11937 – 11942.en_US
dc.identifier.citedreferenceUnsworth LD, van der Oost J, Koutsopoulos S. Hyperthermophilic enzymes—stability, activity and implementation strategies for high temperature applications. FEBS J 2007; 274: 4044 – 4056.en_US
dc.identifier.citedreferenceSchoemaker HE, Mink D, Wubbolts MG. Dispelling the myths—biocatalysis in industrial synthesis. Science 2003; 299: 1694 – 1697.en_US
dc.identifier.citedreferenceFrokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat Rev Drug Discov 2005; 4: 298 – 306.en_US
dc.identifier.citedreferenceLippow SM, Tidor B. Progress in computational protein design. Curr Opin Biotech 2007; 18: 305 – 311.en_US
dc.identifier.citedreferencePotapov V, Cohen M, Schreiber G. Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details. Protein Eng Des Sel 2009; 22: 553 – 560.en_US
dc.identifier.citedreferenceBerezovsky IN, Shakhnovich EI. Physics and evolution of thermophilic adaptation. Proc Natl Acad Sci USA 2005; 102: 12742 – 12747.en_US
dc.identifier.citedreferenceBerezovsky IN, Zeldovich KB, Shakhnovich EI. Positive and negative design in stability and thermal adaptation of natural proteins. PLoS Comput Biol 2007; 3: e52.en_US
dc.identifier.citedreferenceGianese G, Argos P, Pascarella S. Structural adaptation of enzymes to low temperatures. Protein Eng 2001; 14: 141 – 148.en_US
dc.identifier.citedreferenceMandrich L, Pezzullo M, Del Vecchio P, Barone G, Rossi M, Manco G. Analysis of thermal adaptation in the HSL enzyme family. J Mol Biol 2004; 335: 357 – 369.en_US
dc.identifier.citedreferenceMcDonald JH. Patterns of temperature adaptation in proteins from the bacteria Deinococcus radiodurans and Thermus thermophilus. Mol Biol Evol 2001; 18: 741 – 749.en_US
dc.identifier.citedreferenceMenendez‐Arias L, Argos P. Engineering protein thermal stability. Sequence statistics point to residue substitutions in alpha‐helices. JMol Biol 1989; 206: 397 – 406.en_US
dc.identifier.citedreferenceMetpally RP, Reddy BV. Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: insights into the molecular basis of cold adaptation of proteins. BMC Genomics 2009; 10: 11.en_US
dc.identifier.citedreferenceRazvi A, Scholtz JM. Lessons in stability from thermophilic proteins. Protein Sci 2006; 15: 1569 – 1578.en_US
dc.identifier.citedreferenceZeldovich KB, Berezovsky IN, Shakhnovich EI. Protein and DNA sequence determinants of thermophilic adaptation. PLoS Comput Biol 2007; 3: e5.en_US
dc.identifier.citedreferenceZhou XX, Wang YB, Pan YJ, Li WF. Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids 2008; 34: 25 – 33.en_US
dc.identifier.citedreferenceHaney PJ, Badger JH, Buldak GL, Reich CI, Woese CR, Olsen GJ. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc Natl Acad Sci USA 1999; 96: 3578 – 3583.en_US
dc.identifier.citedreferenceGlyakina AV, Garbuzynskiy SO, Lobanov MY, Galzitskaya OV. Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms. Bioinformatics 2007; 23: 2231 – 2238.en_US
dc.identifier.citedreferenceGuerois R, Nielsen JE, Serrano L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 2002; 320: 369 – 387.en_US
dc.identifier.citedreferenceGu J, Hilser VJ. Sequence‐based analysis of protein energy landscapes reveals nonuniform thermal adaptation within the proteome. Mol Biol Evol 2009; 26: 2217 – 2227.en_US
dc.identifier.citedreferenceGu J, Hilser VJ. Predicting the energetics of conformational fluctuations in proteins from sequence: a strategy for profiling the proteome. Structure 2008; 16: 1627 – 1637.en_US
dc.identifier.citedreferenceChan CH, Liang HK, Hsiao NW, Ko MT, Lyu PC, Hwang JK. Relationship between local structural entropy and protein thermostability. Proteins 2004; 57: 684 – 691.en_US
dc.identifier.citedreferencePokala N, Handel TM. Energy functions for protein design: adjustment with protein‐protein complex affinities, models for the unfolded state, and negative design of solubility and specificity. J Mol Biol 2005; 347: 203 – 227.en_US
dc.identifier.citedreferenceZhou H, Zhou Y. Distance‐scaled, finite ideal‐gas reference state improves structure‐derived potentials of mean force for structure selection and stability prediction. Protein Sci 2002; 11: 2714 – 2726.en_US
dc.identifier.citedreferenceYin S, Ding F, Dokholyan NV. Modeling backbone flexibility improves protein stability estimation. Structure 2007; 15: 1567 – 1576.en_US
dc.identifier.citedreferenceCapriotti E, Fariselli P, Casadio R. I‐Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic acids research 2005; 33 (Web Server issue): W306 – W310.en_US
dc.identifier.citedreferenceCheng J, Randall A, Baldi P. Prediction of protein stability changes for single‐site mutations using support vector machines. Proteins 2006; 62: 1125 – 1132.en_US
dc.identifier.citedreferenceMasso M, Vaisman, II. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis. Bioinformatics 2008; 24: 2002 – 2009.en_US
dc.identifier.citedreferenceMontanucci L, Fariselli P, Martelli PL, Casadio R. Predicting protein thermostability changes from sequence upon multiple mutations. Bioinformatics 2008; 24: I190 – I195.en_US
dc.identifier.citedreferenceWu LC, Lee JX, Huang HD, Liu BJ, Horng JT. An expert system to predict protein thermostability using decision tree. Expert Systems Appl 2009; 36: 9007 – 9014.en_US
dc.identifier.citedreferenceGromiha MM, Oobatake M, Sarai A. Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins. Biophys Chem 1999; 82: 51 – 67.en_US
dc.identifier.citedreferenceHuang LT, Gromiha MM. Reliable prediction of protein thermostability change upon double mutation from amino acid sequence. Bioinformatics 2009; 25: 2181 – 2187.en_US
dc.identifier.citedreferenceSingh RK, Tropsha A, Vaisman II. Delaunay tessellation of proteins: four body nearest‐neighbor propensities of amino acid residues. J Comp Biol 1996; 3: 213 – 221.en_US
dc.identifier.citedreferenceZhang Y. Protein structure prediction: when is it useful? Curr Opin Struct Biol 2009; 19: 145 – 155.en_US
dc.identifier.citedreferenceWu S, Skolnick J, Zhang Y. Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol 2007; 5: 17.en_US
dc.identifier.citedreferenceZhang Y. Template‐based modeling and free modeling by I‐TASSER in CASP7. Proteins 2007; 69 ( Suppl 8 ): 108 – 117.en_US
dc.identifier.citedreferenceZhang Y. I‐TASSER: fully automated protein structure prediction in CASP8. Proteins 2009; 77 ( Suppl 9 ): 100 – 113.en_US
dc.identifier.citedreferenceLi Y, Middaugh CR, Fang J. A novel scoring function for discriminating hyperthermophilic and mesophilic proteins with application to predicting relative thermostability of protein mutants. BMC Bioinformatics 2010; 11: 62.en_US
dc.identifier.citedreferenceBecktel WJ, Schellman JA. Protein stability curves. Biopolymers 1987; 26: 1859 – 1877.en_US
dc.identifier.citedreferenceLi YQ, Fang JW. Distance‐dependent statistical potentials for discriminating thermophilic and mesophilic proteins. Biochem Biophys Res Commun 2010; 396: 736 – 741.en_US
dc.identifier.citedreferenceKryshtafovych A, Krysko O, Daniluk P, Dmytriv Z, Fidelis K. Protein structure prediction center in CASP8. Proteins‐Struct Funct Bioinformatics 2009; 77: 5 – 9.en_US
dc.identifier.citedreferenceMoult J, Fidelis K, Kryshtafovych A, Rost B, Hubbard T, Tramontano A. Critical assessment of methods of protein structure prediction—round VII. Proteins‐Struct Funct Bioinformatics 2007; 69: 3 – 9.en_US
dc.identifier.citedreferenceWu S, Zhang Y. LOMETS: a local meta‐threading‐server for protein structure prediction. Nucleic Acids Res 2007; 35: 3375 – 3382.en_US
dc.identifier.citedreferenceZhang Y, Skolnick J. SPICKER: a clustering approach to identify near‐native protein folds. J Comput Chem 2004; 25: 865 – 871.en_US
dc.identifier.citedreferenceLi Y, Zhang Y. REMO: A new protocol to refine full atomic protein models from C‐alpha traces by optimizing hydrogen‐bonding networks. Proteins‐Structure Function and Bioinformatics 2009; 76: 665 – 676.en_US
dc.identifier.citedreferenceZhang Y. I‐TASSER server for protein 3D structure prediction. BMC Bioinformatics 2008; 9: 40.en_US
dc.identifier.citedreferenceZhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality. Proteins 2004; 57: 702 – 710.en_US
dc.identifier.citedreferenceKumar MD, Bava KA, Gromiha MM, Prabakaran P, Kitajima K, Uedaira H, Sarai A. ProTherm and ProNIT: thermodynamic databases for proteins and protein‐nucleic acid interactions. Nucleic Acids Res 2006; 34 (Database issue): D204 – D206.en_US
dc.identifier.citedreferenceLi Y, Drummond DA, Sawayama AM, Snow CD, Bloom JD, Arnold FH. A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments. Nat Biotechnol 2007; 25: 1051 – 1056.en_US
dc.identifier.citedreferenceAltschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403 – 410.en_US
dc.identifier.citedreferenceKabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers 1983; 22: 2577 – 2637.en_US
dc.identifier.citedreferenceLiang J, Edelsbrunner H, Woodward C. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 1998; 7: 1884 – 1897.en_US
dc.identifier.citedreferenceMasso M, Vaisman, II. Accurate prediction of enzyme mutant activity based on a multibody statistical potential. Bioinformatics 2007; 23: 3155 – 3161.en_US
dc.identifier.citedreferenceDeutsch C, Krishnamoorthy B. Four‐body scoring function for mutagenesis. Bioinformatics 2007; 23: 3009 – 3015.en_US
dc.identifier.citedreferenceGromiha MM, Huang L‐T, Lai L‐F. Sequence based prediction of protein mutant stability and discrimination of thermophilic proteins. Lecture Notes Comput Sci 2008; 5265: 1 – 12.en_US
dc.identifier.citedreferenceKim H, Moon EJ, Moon S, Jung HJ, Yang YL, Park YH, Heo M, Cheon M, Chang I, Han DS. New method of evaluating relative thermal stabilities of proteins based on their amino acid sequences; Targetstar. Int J Modern Phys C 2007; 18: 1513 – 1526.en_US
dc.identifier.citedreferenceBrych SR, Blaber SI, Logan TM, Blaber M. Structure and stability effects of mutations designed to increase the primary sequence symmetry within the core region of a beta‐trefoil. Protein Sci 2001; 10: 2587 – 2599.en_US
dc.identifier.citedreferenceCulajay JF, Blaber SI, Khurana A, Blaber M. Thermodynamic characterization of mutants of human fibroblast growth factor 1 with an increased physiological half‐life. Biochemistry 2000; 39: 7153 – 7158.en_US
dc.identifier.citedreferenceDalluge R, Oschmann J, Birkenmeier O, Lucke C, Lilie H, Rudolph R, Lange C. A tetrapeptide fragment‐based design method results in highly stable artificial proteins. Proteins‐Struct Funct Bioinformatics 2007; 68: 839 – 849.en_US
dc.identifier.citedreferenceFinn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A. The Pfam protein families database. Nucleic Acids Res 2008; 36 (Database issue): D281 – D288.en_US
dc.identifier.citedreferenceBae E, Bannen RM, Phillips GN, Jr. Bioinformatic method for protein thermal stabilization by structural entropy optimization. Proc Natl Acad Sci USA 2008; 105: 9594 – 9597.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.