Show simple item record

Chronic N deposition alters root respiration‐tissue N relationship in northern hardwood forests

dc.contributor.authorBurton, Andrew J.en_US
dc.contributor.authorJarvey, Julie C.en_US
dc.contributor.authorJarvi, Mickey P.en_US
dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorPregitzer, Kurt S.en_US
dc.date.accessioned2012-01-05T22:06:47Z
dc.date.available2013-03-04T15:29:55Zen_US
dc.date.issued2012-01en_US
dc.identifier.citationBurton, Andrew J.; Jarvey, Julie C.; Jarvi, Mickey P.; Zak, Donald R.; Pregitzer, Kurt S. (2012). "Chronic N deposition alters root respiration‐tissue N relationship in northern hardwood forests." Global Change Biology 18(1): 258-266. <http://hdl.handle.net/2027.42/89536>en_US
dc.identifier.issn1354-1013en_US
dc.identifier.issn1365-2486en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/89536
dc.description.abstractSpecific root respiration rates typically increase with increasing tissue N concentration. As a result, it is often assumed that external factors inducing greater root N concentration, such as chronic N deposition, will lead to increased respiration rates. However, enhanced N availability also alters root biomass, making the ecosystem‐level consequences on whole‐root‐system respiration uncertain. The objective of this study was to determine the effects of chronic experimental N deposition on root N concentrations, specific respiration rates, and biomass for four northern hardwood forests in M ichigan. Three of the six measurement plots at each location have received experimental N deposition (3 g  NO 3 − ‐ N  m −2  yr −1 ) since 1994. We measured specific root respiration rates and N concentrations of roots from four size classes (<0.5, 0.5–1, 1–2, and 2–10 mm) at three soil depths (0–10, 10–30, and 30–50 cm). Root biomass data for the same size classes and soil depths was used in combination with specific respiration rates to assess the response of whole‐root‐system respiration. Root N and respiration rate were greater for smaller diameter roots and roots at shallow depths. In addition, root N concentrations were significantly greater under chronic N deposition, particularly for larger diameter roots. Specific respiration rates and root biomass were unchanged for all depths and size classes, thus whole‐root‐system respiration was not altered by chronic N deposition. Higher root N concentrations in combination with equivalent specific respiration rates under experimental N deposition resulted in a lower ratio of respiration to tissue N . These results indicate that relationships between root respiration rate and N concentration do not hold if N availability is altered significantly. For these forests, use of the ambient respiration to N relationship would over‐predict actual root system respiration for the chronic N deposition treatment by 50%.en_US
dc.publisherUSDA Forest Service Research Note INT‐RN‐217en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherA Cer Saccharumen_US
dc.subject.otherModeling Respirationen_US
dc.subject.otherRoot Biomassen_US
dc.subject.otherRoot System Respirationen_US
dc.subject.otherSpecific Respiration Rateen_US
dc.titleChronic N deposition alters root respiration‐tissue N relationship in northern hardwood forestsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/89536/1/gcb2527.pdf
dc.identifier.doi10.1111/j.1365-2486.2011.02527.xen_US
dc.identifier.sourceGlobal Change Biologyen_US
dc.identifier.citedreferenceAmthor JS ( 2000 ) The McCree–de Wit–Penning de Vries–Thornley respiration paradigms: 30 years later. Annals of Botany, 86, 1 – 20.en_US
dc.identifier.citedreferenceAtkin OK, Tjoelker MG ( 2003 ) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science, 8, 343 – 351.en_US
dc.identifier.citedreferenceAtkinson LJ, Hellicar MA, Fitter AH, Atkin OK ( 2007 ) Impact of temperature on the relationship between respiration and nitrogen concentration in roots: an analysis of scaling relationships, Q 10 values and thermal acclimation ratios. New Phytologist, 173, 110 – 120.en_US
dc.identifier.citedreferenceBakker MR, Jolicoeur E, Trichet P, Augusto L, Plassard C, Guinberteau J, Loustau D ( 2009 ) Adaptation of fine roots to annual fertilization and irrigation in a 13‐year‐old Pinus pinaster stand. Tree Physiology, 29, 229 – 238.en_US
dc.identifier.citedreferenceBauer GA, Bazzaz FA, Minocha R, Long S, Magill A, Aber J, Berntson GM ( 2004 ) Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine ( Pinus resinosa Ait.) stand in the NE United States. Forest Ecology and Management, 196, 173 – 186.en_US
dc.identifier.citedreferenceBurton AJ, Pregitzer KS ( 2003 ) Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine. Tree Physiology, 23, 273 – 280.en_US
dc.identifier.citedreferenceBurton AJ, Pregitzer KS, Zogg GP, Zak DR ( 1996 ) Latitudinal variation in sugar maple fine root respiration. Canadian Journal of Forest Research, 26, 1761 – 1768.en_US
dc.identifier.citedreferenceBurton AJ, Pregitzer KS, Zogg GP, Zak DR ( 1998 ) Drought reduces root respiration in sugar maple forests. Ecological Applications, 8, 771 – 778.en_US
dc.identifier.citedreferenceBurton AJ, Pregitzer KS, Hendrick RL ( 2000 ) Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 125, 389 – 399.en_US
dc.identifier.citedreferenceBurton AJ, Pregitzer KS, Ruess RW, Hendrick RL, Allen MF ( 2002 ) Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes. Oecologia, 131, 559 – 568.en_US
dc.identifier.citedreferenceBurton AJ, Pregitzer KS, Crawford JN, Zogg GP, Zak DR ( 2004 ) Simulated chronic NO 3 − deposition reduces soil respiration in northern hardwood forests. Global Change Biology, 10, 1080 – 1091.en_US
dc.identifier.citedreferenceCannell MGR, Thornley JHM ( 2000 ) Modelling the components of plant respiration: some guiding principles. Annals of Botany, 85, 45 – 54.en_US
dc.identifier.citedreferenceChen DM, Zhou LX, Rao XQ, Lin YB, Fu SL ( 2010 ) Effects of root diameter and root nitrogen concentration on in situ root respiration among different seasons and tree species. Ecological Research, 25, 983 – 993.en_US
dc.identifier.citedreferenceDesrochers A, Landhäusser SM, Liefers VJ ( 2002 ) Coarse and fine root respiration in aspen ( Populus tremuloides ). Tree Physiology, 22, 725 – 732.en_US
dc.identifier.citedreferencevan Diepen LTA, Lilleskov EA, Pregitzer KS, Miller RM ( 2007 ) Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen amendments. New Phytologist, 176, 175 – 183.en_US
dc.identifier.citedreferencevan Diepen LTA, Lilleskov EA, Pregitzer KS, Miller RM ( 2010 ) Simulated nitrogen deposition causes a decline of intra‐ and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests. Ecosystems, 13, 683 – 695.en_US
dc.identifier.citedreferenceGifford RM ( 2003 ) Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon‐cycle research. Functional Plant Biology, 30, 171 – 186.en_US
dc.identifier.citedreferenceGuo DL, Xia MX, Wei X, Change WJ, Liu Y, Wang ZQ ( 2008 ) Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty‐three Chinese temperate tree species. New Phytologist, 180, 673 – 683.en_US
dc.identifier.citedreferenceHanson PJ, Amthor JS, Wullschleger SD et al. ( 2004 ) Oak forest and water simulations: model intercomparisons and evaluations against independent data. Ecological Monographs, 74, 443 – 489.en_US
dc.identifier.citedreferenceHaynes BE, Gower ST ( 1995 ) Belowground carbon allocation in unfertilized and fertilized plantations in northern Wisconsin. Tree Physiology, 15, 317 – 325.en_US
dc.identifier.citedreferenceHendrick RL, Pregitzer KS ( 1992 ) The demography of fine roots in a northern hardwood forest. Ecology, 73, 1094 – 1104.en_US
dc.identifier.citedreferenceHendrick RL, Pregitzer KS ( 1996 ) Temporal and depth‐related patterns of fine root dynamics in northern hardwood forests. Journal of Ecology, 84, 167 – 176.en_US
dc.identifier.citedreferenceJia SX, Wang ZQ, Li XP, Sun Y, Zhang XP, Liang AZ ( 2010 ) N fertilization affects on soil respiration, microbial biomass and root respiration in Larix gmelinii and Fraxinus mandshurica plantations in China. Plant and Soil, 333, 325 – 336.en_US
dc.identifier.citedreferenceJurgensen MF, Larsen MJ, Harvey AE ( 1977 ) A Soil Sampler for Steep, Rocky Sites. USDA Forest Service Research Note INT‐RN‐217.en_US
dc.identifier.citedreferenceMacDonald NW, Burton AJ, Liechty HO et al. ( 1992 ) Ion leaching in forest ecosystems along a Great Lakes air pollution gradient. Journal of Environmental Quality, 21, 614 – 623.en_US
dc.identifier.citedreferenceMagill AH, Aber JD, Berntson GM, McDowell WH, Nadelhoffer KJ, Melillo JM, Steudler P ( 2000 ) Long‐term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems, 3, 238 – 253.en_US
dc.identifier.citedreferenceMagill AH, Aber JD, Currie WS et al. ( 2004 ) Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 196, 7 – 28.en_US
dc.identifier.citedreferenceMarsden C, Nouvelloni Y, Epron D ( 2008 ) Relating coarse root respiration to root diameter in clonal Eucalyptus stands in the Republic of the Congo. Tree Physiology, 28, 1245 – 1254.en_US
dc.identifier.citedreferenceMelillo JM, Steudler PA, Aber JD et al. ( 2002 ) Soil warming and carbon‐cycle feedbacks to the climate system. Science, 298, 2173 – 2176.en_US
dc.identifier.citedreferenceMelillo JM, Butler S, Johnson J et al. ( 2011 ) Soil warming, carbon–nitrogen interactions and forest carbon budgets. Proceedings of the National Academy of Sciences, 108, 9508 – 9512.en_US
dc.identifier.citedreferencePregitzer KS, Burton AJ, Mroz GD, Liechty HO, MacDonald NW ( 1992 ) Foliar sulfur and nitrogen along an 800‐km pollution gradient. Canadian Journal of Forest Research, 22, 1761 – 1769.en_US
dc.identifier.citedreferencePregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR ( 1998 ) Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiology, 18, 665 – 670.en_US
dc.identifier.citedreferencePregitzer KS, Zak DR, Burton AJ, Ashby JA, MacDonald NW ( 2004 ) Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems. Biogeochemistry, 68, 179 – 197.en_US
dc.identifier.citedreferenceRastetter EB, Ryan MG, Shaver GR, Melillo JM, Nadelhoffer KJ, Hobbie JE, Aber JD ( 1991 ) A general biogeochemical model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO 2, climate, and N deposition. Tree Physiology, 9, 101 – 126.en_US
dc.identifier.citedreferenceReich PB, Tjoelker MG, Pregitzer KS, Wright IJ, Oleksyn J, Machado JL ( 2008 ) Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters, 11, 793 – 801.en_US
dc.identifier.citedreferenceRustad LE, Campbell JL, Marion GM et al. ( 2001 ) A meta‐analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543 – 562.en_US
dc.identifier.citedreferenceRyan MG, Hubbard RM, Pongracic S, Raison RJ, McMurtrie RE ( 1996 ) Foliage, fine‐root, woody tissue and stand respiration in Pinus radiata in relation to nutrient stress. Tree Physiology, 16, 333 – 343.en_US
dc.identifier.citedreferenceda Silva EV, Bouillet J‐P, Gonçalves JLM et al. ( 2011 ) Functional specialization of Eucalyptus fine roots: contrasting potential uptake rates for nitrogen, potassium and calcium tracers at varying soil depths. Functional Ecology, doi: 10.1111/j.1365-2435.2011.01867.x, in press.en_US
dc.identifier.citedreferenceSmucker AJM, McBurney SL, Srivanstava AK ( 1982 ) Quantitative separation of roots from compacted soil profiles by the hydropneumatic elutriation system. Agronomy Journal, 74, 500 – 503.en_US
dc.identifier.citedreferenceTjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D ( 2005 ) Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist, 167, 493 – 508.en_US
dc.identifier.citedreferenceUgawa S, Miura S, Iwamoto K, Kaneko S, Fukuda K ( 2010 ) Vertical patterns of fine root biomass, morphology and nitrogen concentration in a subalpine fir‐wave forest. Plant and Soil, 335, 469 – 478.en_US
dc.identifier.citedreferenceWells CE, Eissenstat DM ( 2003 ) Beyond the roots of young seedlings: the influence of age and order on fine root physiology. Journal of Plant Growth Regulation, 21, 324 – 334.en_US
dc.identifier.citedreferenceXia MX, Guo DL, Pregitzer KS ( 2010 ) Ephemeral root modules in Fraxinus mandshurica. New Phytologist, 188, 1065 – 1074.en_US
dc.identifier.citedreferenceZak DR, Holmes WE, MacDonald NW, Pregitzer KS ( 1999 ) Soil temperature, matric potential, and the kinetics of microbial respiration and nitrogen mineralization. Soil Science Society of America Journal, 63, 575 – 584.en_US
dc.identifier.citedreferenceZhou Y, Tang J, Melillo JM, Butler SM, Mohan JE ( 2011 ) Fine root standing crop and chemistry after six years of soil warming in a temperate forest. Tree Physiology, 31, 707 – 717.en_US
dc.identifier.citedreferenceZogg GP, Zak DR, Burton AJ, Pregitzer KS ( 1996 ) Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability. Tree Physiology, 16, 719 – 725.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.