Predicting the Hypoxic‐Volume in Chesapeake Bay with the Streeter–Phelps Model: A Bayesian Approach 1
dc.contributor.author | Liu, Yong | en_US |
dc.contributor.author | Arhonditsis, George B. | en_US |
dc.contributor.author | Stow, Craig A. | en_US |
dc.contributor.author | Scavia, Donald | en_US |
dc.date.accessioned | 2012-01-05T22:07:05Z | |
dc.date.available | 2013-02-01T20:26:14Z | en_US |
dc.date.issued | 2011-12 | en_US |
dc.identifier.citation | Liu, Yong; Arhonditsis, George B.; Stow, Craig A.; Scavia, Donald (2011). "Predicting the Hypoxic‐Volume in Chesapeake Bay with the Streeter–Phelps Model: A Bayesian Approach 1 ." JAWRA Journal of the American Water Resources Association 47(6). <http://hdl.handle.net/2027.42/89549> | en_US |
dc.identifier.issn | 1093-474X | en_US |
dc.identifier.issn | 1752-1688 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/89549 | |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | Hypoxia | en_US |
dc.subject.other | Chesapeake Bay | en_US |
dc.subject.other | Bayesian Inference | en_US |
dc.subject.other | Markov Chain Monte Carlo | en_US |
dc.subject.other | Streeter–Phelps Model | en_US |
dc.subject.other | Uncertainty Analysis | en_US |
dc.subject.other | Eutrophication | en_US |
dc.title | Predicting the Hypoxic‐Volume in Chesapeake Bay with the Streeter–Phelps Model: A Bayesian Approach 1 | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Natural Resources and Environment | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Professor, School of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan 48109 | en_US |
dc.contributor.affiliationother | Respectively, Research Professor, College of Environmental Science and Engineering, The Key Laboratory of Water and Sediment Sciences Ministry of Education, Peking University, Beijing 100871, China | en_US |
dc.contributor.affiliationother | Associate Professor, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Canada M1C 1A4 | en_US |
dc.contributor.affiliationother | Senior Research Scientist, NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan 48105‐2945 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/89549/1/j.1752-1688.2011.00588.x.pdf | |
dc.identifier.doi | 10.1111/j.1752-1688.2011.00588.x | en_US |
dc.identifier.source | JAWRA Journal of the American Water Resources Association | en_US |
dc.identifier.citedreference | Arhonditsis, G.B., B.A. Adams‐VanHarn, L. Nielsen, C.A. Stow, and K.H. Reckhow, 2006. Evaluation of the Current State of Mechanistic Aquatic Biogeochemical Modeling: Citation Analysis and Future Perspectives. Environmental Science & Technology 40: 6547 ‐ 6554. | en_US |
dc.identifier.citedreference | Arhonditsis, G.B. and M.T. Brett, 2004. Evaluation of the Current State of Mechanistic Aquatic Biogeochemical Modelling. Marine Ecology-Progress Series 271: 13 ‐ 26. | en_US |
dc.identifier.citedreference | Arhonditsis, G.B., D. Papantou, W. Zhang, G. Perhar, E. Massos, and M. Shi, 2008b. Bayesian Calibration of Mechanistic Aquatic Biogeochemical Models and Benefits for Environmental Management. Journal of Marine Systems 73: 8 ‐ 30. | en_US |
dc.identifier.citedreference | Arhonditsis, G.B., G. Perhar, W. Zhang, E. Massos, M. Shi, and A. Das, 2008a. Addressing Equifinality and Uncertainty in Eutrophication Models. Water Recourses Research 44: W01420. | en_US |
dc.identifier.citedreference | Arhonditsis, G.B., S.S. Qian, C.A. Stow, C.E. Lamon, and K.H. Reckhow, 2007. Eutrophication Risk Assessment Using Bayesian Calibration of Process‐Based Models: Application to a Mesotrophic Lake. Ecological Modelling 28 ( 2‐4 ): 215 ‐ 229. | en_US |
dc.identifier.citedreference | Boesch, D.F., R.B. Brinsfield, and R.E. Magnien, 2001. Chesapeake Bay Eutrophication: Scientific Understanding, Ecosystem Restoration and Challenges for Agriculture. Journal of Environment Quality 30: 303 ‐ 320. | en_US |
dc.identifier.citedreference | Boesch, D.F., V.J. Coles, D.G. Kimmel, and W.D. Miller, 2007. Ramifications of Climate Change for Chesapeake Bay Hypoxia. In: Regional Impacts of Climate Change: Four Case Studies in the United States, Kristie L. Ebi, Gerald A. Meehl, Dominique Bachelet, Robert R. Twilley and Donald F. Boesch (Editors). Pew Center on Global Climate Change, Arlington, Virginia, pp. 54 ‐ 70. | en_US |
dc.identifier.citedreference | Borsuk, M.E., D. Higdon, C.A. Stow, and K.H. Reckhow, 2001. A Bayesian Hierarchical Model to Predict Benthic Oxygen Demand From Organic Matter Loading in Estuaries and Coastal Zones. Ecological Modelling 143: 165 ‐ 181. | en_US |
dc.identifier.citedreference | Bricker, S., B. Longstaff, W. Dennison, A. Jones, K. Boicourt, C. Wicks, and J. Woerner, 2007. Effects of Nutrient Enrichment in the Nation’s Estuaries: A Decade of Change. NOAA Coastal Ocean Program Decision Analysis Series No. 26. National Centers for Coastal Ocean Science, Silver Spring, Maryland, 328 pp. | en_US |
dc.identifier.citedreference | Cerco, C.F. and T.M. Cole, 1993. Three‐Dimensional Eutrophication Model of Chesapeake Bay. Journal of Environmental Engineering 119: 1006 ‐ 1025. | en_US |
dc.identifier.citedreference | Cerco, C. and M. Noel, 2004. Process‐Based Primary Production Modeling in Chesapeake Bay. Marine Ecology Progress Series 282: 45 ‐ 58. | en_US |
dc.identifier.citedreference | Chapra, S.C., 1997. Surface Water‐Quality Modeling. McGraw‐Hill, New York. | en_US |
dc.identifier.citedreference | Cohn, T.A., L.L. Delong, E.J. Gilroy, R.M. Hirsch, and R.M. Wells, 1989. Estimating Constituent Loads. Water Resources Research 25: 937 ‐ 942. | en_US |
dc.identifier.citedreference | Cooper, S.R. and G.S. Brush, 1991. Long‐Term History of Chesapeake Bay Anoxia. Science 254: 992 ‐ 996. | en_US |
dc.identifier.citedreference | Diaz, R.J. and R. Rosenberg, 2008. Spreading Dead Zones and Consequences for Marine Ecosystems. Science 321: 926 ‐ 929. | en_US |
dc.identifier.citedreference | Dorazio, R.M. and F.A. Johnson, 2003. Bayesian Inference and Decision Theory ‐ A Framework for Decision Making in Natural Resource Management. Ecological Applications 13: 556 ‐ 563. | en_US |
dc.identifier.citedreference | Gelfand, A.E. and A.F.M. Smith, 1990. Sampling‐Based Approaches to Calculating Marginal Densities. Journal of the American Statistical Association 85: 398 ‐ 409. | en_US |
dc.identifier.citedreference | Gelman, A. and J. Hill, 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, New York. | en_US |
dc.identifier.citedreference | Gill, J., 2002. Bayesian Methods: A Social and Behavioral Sciences Approach. Chapman & Hall/CRC, Boca Raton, Florida. | en_US |
dc.identifier.citedreference | Hagy, J.D., W.R. Boynton, C.W. Keefe, and K.V. Wood, 2004. Hypoxia in Chesapeake Bay, 1950–2001: Long‐Term Change in Relation to Nutrient Loading and River Flow. Estuaries 27: 634 ‐ 658. | en_US |
dc.identifier.citedreference | Harding, L.W., and E. Perry, Jr., 1997. Long‐Term Increase of Phytoplankton Biomass in Chesapeake Bay. Marine Ecology Progress Series 157: 39 ‐ 52. | en_US |
dc.identifier.citedreference | Hastings, W.K., 1970. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika 57 ( 1 ): 97 ‐ 109. | en_US |
dc.identifier.citedreference | Kemp, W.M., W.R. Boynton, J.E. Adolf, D.F. Boesch, W.C. Boicourt, G. Brush, J.C. Cornwell, T.R. Fisher, P.M. Glibert, J.D. Hagy, L.W. Harding, E.D. Houde, D.G. Kimmel, W.D. Miller, R.I.E. Newell, M.R. Roman, E.M. Smith, and J.C. Stevenson, 2005. Eutrophication of Chesapeake Bay: Historical Trends and Ecological Interactions. Marine Ecology Progress Series 303: 1 ‐ 29. | en_US |
dc.identifier.citedreference | Liu, Y. and D. Scavia, 2010. Analysis of the Chesapeake Bay Hypoxia Regime Shift: Insights from Two Simple Mechanistic Models. Estuaries and Coasts 33 ( 3 ): 629 ‐ 639. | en_US |
dc.identifier.citedreference | Lunn, D.J., A. Thomas, N. Best, and D. Spiegelhalter, 2000. WinBUGS ‐ a Bayesian Modelling Framework: Concepts, Structure, and Extensibility. Statistics and Computing 10: 325 ‐ 337. | en_US |
dc.identifier.citedreference | Malve, O. and S.S. Qian, 2006. Estimating Nutrients and Chlorophyll a Relationships in Finnish Lakes. Environmental Science and Technology 40 ( 24 ): 7848 ‐ 7853. | en_US |
dc.identifier.citedreference | Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, 1953. Equation of State Calculations by Fast Computing Machines. Journal of Chemical Physics 21 ( 6 ): 1087 ‐ 1092. | en_US |
dc.identifier.citedreference | Newcombe, C.L. and W.A. Horne, 1938. Oxygen‐Poor Waters of the Chesapeake Bay. Science 88: 80 ‐ 81. | en_US |
dc.identifier.citedreference | NRC, 2000. Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. National Research Council, National Academy Press, Washington, D.C. | en_US |
dc.identifier.citedreference | NRC, 2001. Assessing the TMDL Approach to Water Quality Management. National Research Council, National Academy Press, Washington, D.C. | en_US |
dc.identifier.citedreference | Officer, C.B., R.B. Biggs, J.L. Taft, L.E. Cronin, M.A. Tyler, and W.R. Boynton, 1984. Chesapeake Bay Anoxia: Origin, Development, and Significance. Science 223: 22 ‐ 27. | en_US |
dc.identifier.citedreference | Qian, S.S. and K.H. Reckhow, 2007. Combining Model Results and Monitoring Data for Water Quality Assessment. Environmental Science and Technology 41: 5008 ‐ 5013. | en_US |
dc.identifier.citedreference | Qian, S.S., C.A. Stow, and M.E. Borsuk, 2003. On Monte Carlo Methods for Bayesian Inference. Ecological Modelling 159 ( 2‐3 ): 269 ‐ 277. | en_US |
dc.identifier.citedreference | Reckhow, K.H., 1994. Importance of Scientific Uncertainty in Decision‐Making. Environmental Management 18: 161 ‐ 166. | en_US |
dc.identifier.citedreference | Reichert, P. and M. Omlin, 1997. On the Usefulness of Over Parameterized Ecological Models. Ecological Modelling 95: 289 ‐ 299. | en_US |
dc.identifier.citedreference | Scavia, D. and K.A. Donnelly, 2007. Reassessing Hypoxia Forecasts for the Gulf of Mexico. Environmental Science and Technology 41: 8111 ‐ 8117. | en_US |
dc.identifier.citedreference | Scavia, D., D. Justic, and V.J. Bierman, Jr., 2004. Reducing Hypoxia in the Gulf of Mexico: Advice From Three Models. Estuaries 27: 419 ‐ 425. | en_US |
dc.identifier.citedreference | Scavia, D., E.L.A. Kelly, and J.D. Hagy, 2006. A Simple Model for Forecasting the Effects of Nitrogen Loads on Chesapeake Bay Hypoxia. Estuaries and Coasts 29: 674 ‐ 684. | en_US |
dc.identifier.citedreference | Scavia, D., N.N. Rabalais, R.E. Turner, D. Justic, and W. Wiseman, Jr., 2003. Predicting the Response of Gulf of Mexico Hypoxia to Variations in Mississippi River Nitrogen Load. Limnology and Oceanography 48: 951 ‐ 956. | en_US |
dc.identifier.citedreference | Scheffer, M. and S.R. Carpenter, 2003. Catastrophic Regime Shifts in Ecosystems: Linking Theory to Observation. Trends in Ecology & Evolution 18: 648 ‐ 656. | en_US |
dc.identifier.citedreference | Spiegelhalter, D.J., N.G. Best, B.P. Carlin, and A. van der Linde, 2002. Bayesian Measures of Model Complexity and Fit. Journal of the Royal Statistical Society: Series B 64: 583 ‐ 640. | en_US |
dc.identifier.citedreference | Stow, C.A., K.H. Reckhow, and S.S. Qian, 2006. A Bayesian Approach to Retransformation Bias in Transformed Regression. Ecology 87: 1472 ‐ 1477. | en_US |
dc.identifier.citedreference | Stow, C.A. and D. Scavia, 2009. Modeling Hypoxia in the Chesapeake Bay: Ensemble Estimation Using a Bayesian Hierarchical Model. Journal of Marine Systems 76: 244 ‐ 250. | en_US |
dc.identifier.citedreference | Streeter, H.W. and E.B. Phelps, 1925. A Study in the Pollution and Natural Purification of the Ohio River, III Factors Concerning the Phenomena of Oxidation and Reaeration. US Public Health Service, Public Health Bulletin No. 146, Feb 1925 Reprinted by US PHEW, PHA 1958. | en_US |
dc.identifier.citedreference | Zhang, W. and G.B. Arhonditsis, 2008. Predicting the Frequency of Water Quality Standard Violations Using Bayesian Calibration of Eutrophication Models. Journal of Great Lakes Research 34: 698 ‐ 720. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.