Show simple item record

Frequency of cells expressing CD44, a Head and Neck cancer stem cell marker: Correlation with tumor aggressiveness

dc.contributor.authorJoshua, Benzionen_US
dc.contributor.authorKaplan, Michael J.en_US
dc.contributor.authorDoweck, Ilanaen_US
dc.contributor.authorPai, Reeteshen_US
dc.contributor.authorWeissman, Irving L.en_US
dc.contributor.authorPrince, Mark E. P.en_US
dc.contributor.authorAilles, Laurie E.en_US
dc.date.accessioned2012-01-05T22:07:25Z
dc.date.available2013-03-04T15:29:55Zen_US
dc.date.issued2012-01en_US
dc.identifier.citationJoshua, Benzion; Kaplan, Michael J.; Doweck, Ilana; Pai, Reetesh; Weissman, Irving L.; Prince, Mark E.; Ailles, Laurie E. (2012). "Frequency of cells expressing CD44, a Head and Neck cancer stem cell marker: Correlation with tumor aggressiveness." Head & Neck 34(1): 42-49. <http://hdl.handle.net/2027.42/89564>en_US
dc.identifier.issn1043-3074en_US
dc.identifier.issn1097-0347en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/89564
dc.description.abstractBackground We previously identified by flow cytometry a Lineage‐CD44+ (Lin‐CD44+) subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma (HNSCC). We now correlate clinical and histologic factors with Lin‐CD44+ cell frequency. Methods The study included 31 patients with HNSCC, of whom 87% had stage IV disease. The frequency of Lin‐CD44+ cells and the success of xenografting patient tumors in mice were correlated with clinical and pathologic data. Results The mean frequency of Lin‐CD44+ cells was 25% (0.4%–81%). It was 36% in patients who had recurrence versus 15% for those without recurrence ( p = .04). Successful xenograft implantation occurred in 53%. Seventy‐five percent of patients with successful xenografts had recurrence versus 21% of patients with unsuccessful xenografts ( p = .003). Conclusions Successful xenograft implantation and a high frequency of Lin‐CD44+ cells correlate with known poor prognostic factors such as advanced T classification and recurrence. These findings may support the stem cell concept in HNSCC. © 2011 Wiley Periodicals, Inc. Head Neck, 2012en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherHead and Necken_US
dc.subject.otherSquamous Cell Carcinomaen_US
dc.subject.otherCanceren_US
dc.subject.otherStem Cellsen_US
dc.subject.otherCD44en_US
dc.titleFrequency of cells expressing CD44, a Head and Neck cancer stem cell marker: Correlation with tumor aggressivenessen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelOtolaryngologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Otorhinolaryngology–Head and Neck Surgery, University of Michigan, Ann Arboren_US
dc.contributor.affiliationotherDepartment of Otolaryngology–Head and Neck Surgery, Stanford University Medical Center, Stanford, Californiaen_US
dc.contributor.affiliationotherDepartments of Otolaryngology–Head and Neck Surgery, Carmel Medical Center, Haifa, Israelen_US
dc.contributor.affiliationotherDepartment of Pathology, Stanford University Medical Center, Stanford, Californiaen_US
dc.contributor.affiliationotherDepartment of Developmental Biology, Stanford Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, Californiaen_US
dc.contributor.affiliationotherOntario Cancer Institute, Campbell Family Cancer Research Institute, and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canadaen_US
dc.contributor.affiliationotherDepartment of Otolaryngology, Head and Neck Surgery, Stanford University Medical Center, Stanford, Californiaen_US
dc.identifier.pmid21322081en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/89564/1/21699_ftp.pdf
dc.identifier.doi10.1002/hed.21699en_US
dc.identifier.sourceHead & Necken_US
dc.identifier.citedreferenceJain S, Khuri FR, Shin DM. Prevention of head and neck cancer: current status and future prospects. Curr Probl Cancer 2004; 28: 265 – 286.en_US
dc.identifier.citedreferenceLee JT, Ko CY. Has survival improved for nasopharyngeal carcinoma in the United States? Otolaryngol Head Neck Surg 2005; 132: 303 – 308.en_US
dc.identifier.citedreferenceGolas SM. Trends in palatine tonsillar cancer incidence and mortality rates in the United States. Community Dent Oral Epidemiol 2007; 35: 98 – 108.en_US
dc.identifier.citedreferenceGupta S, Kong W, Peng Y, Miao Q, Mackillop WJ. Temporal trends in the incidence and survival of cancers of the upper aerodigestive tract in Ontario and the United States. Int J Cancer 2009; 125: 2159 – 2165.en_US
dc.identifier.citedreferencePardal R, Clarke MF, Morrison SJ. Applying the principles of stem‐cell biology to cancer. Nat Rev Cancer 2003; 3: 895 – 902.en_US
dc.identifier.citedreferenceReya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414 ( 6859 ): 105 – 111.en_US
dc.identifier.citedreferenceBlair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ. Lack of expression of Thy‐1 (CD90) on acute myeloid leukemia cells with long‐term proliferative ability in vitro and in vivo. Blood 1997; 89: 3104 – 3112.en_US
dc.identifier.citedreferenceBonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730 – 737.en_US
dc.identifier.citedreferenceJamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte‐macrophage progenitors as candidate leukemic stem cells in blast‐crisis CML. N Engl J Med 2004; 351: 657 – 667.en_US
dc.identifier.citedreferenceLapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367 ( 6464 ): 645 – 648.en_US
dc.identifier.citedreferenceMiyamoto T, Weissman IL, Akashi K. AML1/ETO‐expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci U S A 2000; 97: 7521 – 7526.en_US
dc.identifier.citedreferenceAilles LE, Weissman IL. Cancer stem cells in solid tumors. Curr Opin Biotechnol 2007; 18: 460 – 466.en_US
dc.identifier.citedreferenceRosen JM, Jordan CT. The increasing complexity of the cancer stem cell paradigm. Science 2009; 324 ( 5935 ): 1670 – 1673.en_US
dc.identifier.citedreferenceQuintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. Efficient tumour formation by single human melanoma cells. Nature 2008; 456 ( 7222 ): 593 – 598.en_US
dc.identifier.citedreferenceShackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 2009; 138: 822 – 829.en_US
dc.identifier.citedreferenceGupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: mirage or reality? Nat Med 2009; 15: 1010 – 1012.en_US
dc.identifier.citedreferenceRobbins KT, Doweck I, Samant S, Vieira F, Kumar P. Factors predictive of local disease control after intra‐arterial concomitant chemoradiation (RADPLAT). Laryngoscope 2004; 114: 411 – 417.en_US
dc.identifier.citedreferenceMassano J, Regateiro FS, Januario G, Ferreira A. Oral squamous cell carcinoma: review of prognostic and predictive factors. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006; 102: 67 – 76.en_US
dc.identifier.citedreferenceLiu R, Wang X, Chen GY, et al. The prognostic role of a gene signature from tumorigenic breast‐cancer cells. N Engl J Med 2007; 356: 217 – 226.en_US
dc.identifier.citedreferencePrince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 2007; 104: 973 – 978.en_US
dc.identifier.citedreferenceAilles L, Prince M. Cancer stem cells in head and neck squamous cell carcinoma. Methods Mol Biol 2009; 568: 175 – 193.en_US
dc.identifier.citedreferenceLocke M, Heywood M, Fawell S, Mackenzie IC. Retention of intrinsic stem cell hierarchies in carcinoma‐derived cell lines. Cancer Res 2005; 65: 8944 – 8950.en_US
dc.identifier.citedreferenceNelson AD, Grandis JR. The role of CD44 in HNSCC. Cancer Biol Ther 2007; 6: 125 – 126.en_US
dc.identifier.citedreferencePonta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003; 4: 33 – 45.en_US
dc.identifier.citedreferenceBankfalvi A, Krassort M, Buchwalow IB, Vegh A, Felszeghy E, Piffko J. Gains and losses of adhesion molecules (CD44, E‐cadherin, and beta‐catenin) during oral carcinogenesis and tumour progression. J Pathol 2002; 198: 343 – 351.en_US
dc.identifier.citedreferenceCarinci F, Stabellini G, Calvitti M, et al. CD44 as prognostic factor in oral and oropharyngeal squamous cell carcinoma. J Craniofac Surg 2002; 13: 85 – 89.en_US
dc.identifier.citedreferenceGonzalez‐Moles MA, Bravo M, Ruiz‐Avila I, et al. Adhesion molecule CD44 as a prognostic factor in tongue cancer. Anticancer Res 2003; 23 ( 6D ): 5197 – 202.en_US
dc.identifier.citedreferenceGonzalez‐Moles MA, Gil‐Montoya JA, Ruiz‐Avila I, Esteban F, Delgado‐Rodriguez M, Bascones‐Martinez A. Prognostic significance of p21WAF1/CIP1, p16INK4a and CD44s in tongue cancer. Oncol Rep 2007; 18: 389 – 396.en_US
dc.identifier.citedreferenceKosunen A, Pirinen R, Ropponen K, et al. CD44 expression and its relationship with MMP‐9, clinicopathological factors and survival in oral squamous cell carcinoma. Oral Oncol 2007; 43: 51 – 59.en_US
dc.identifier.citedreferenceKuo MY, Cheng SJ, Chen HM, Kok SH, Hahn LJ, Chiang CP. Expression of CD44s, CD44v5, CD44v6 and CD44v7–8 in betel quid chewing‐associated oral premalignant lesions and squamous cell carcinomas in Taiwan. J Oral Pathol Med 1998; 27: 428 – 433.en_US
dc.identifier.citedreferenceMasuda M, Kuratomi Y, Shiratsuchi H, Nakashima T, Naonobu K, Komiyama S. Decreased CD44H expression in early‐stage tongue carcinoma associates with late nodal metastases following interstitial brachytherapy. Head Neck 2000; 22: 662 – 665.en_US
dc.identifier.citedreferenceQin G, Li W, Sun X, Zhu L, Chen Z. [Expression and significance of CD44v6 and MMP‐9 in laryngeal squamous cell carcinoma]. Lin Chuang Er Bi Yan Hou Ke Za Zhi 2005; 19: 688 – 691.en_US
dc.identifier.citedreferenceSato S, Miyauchi M, Takekoshi T, et al. Reduced expression of CD44 variant 9 is related to lymph node metastasis and poor survival in squamous cell carcinoma of tongue. Oral Oncol 2000; 36: 545 – 549.en_US
dc.identifier.citedreferenceStoll C, Baretton G, Soost F, Terpe HJ, Domide P, Lohrs U. Prognostic importance of the expression of CD44 splice variants in oral squamous cell carcinomas. Oral Oncol 1999; 35: 484 – 489.en_US
dc.identifier.citedreferenceWang SJ, Wong G, de Heer AM, Xia W, Bourguignon LY. CD44 variant isoforms in head and neck squamous cell carcinoma progression. Laryngoscope 2009; 119: 1518 – 1530.en_US
dc.identifier.citedreferenceMack B, Gires O. CD44s and CD44v6 expression in head and neck epithelia. PLoS One 2008; 3: e3360.en_US
dc.identifier.citedreferenceClay MR, Tabor M, Owen JH, et al. Single‐marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck 2010; 32: 1195 – 1201.en_US
dc.identifier.citedreferenceChen YC, Chen YW, Hsu HS, et al. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun 2009; 385: 307 – 313.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.