Show simple item record

The role of Pax2 in mouse prostate development

dc.contributor.authorXu, Benen_US
dc.contributor.authorHariharan, Arunen_US
dc.contributor.authorRakshit, Sabitaen_US
dc.contributor.authorDressler, Gregory R.en_US
dc.contributor.authorWellik, Deneen M.en_US
dc.date.accessioned2012-01-05T22:07:31Z
dc.date.available2013-04-01T14:17:24Zen_US
dc.date.issued2012-02-01en_US
dc.identifier.citationXu, Ben; Hariharan, Arun; Rakshit, Sabita; Dressler, Gregory R.; Wellik, Deneen M. (2012). "The role of Pax2 in mouse prostate development ." The Prostate 72(2): 217-224. <http://hdl.handle.net/2027.42/89567>en_US
dc.identifier.issn0270-4137en_US
dc.identifier.issn1097-0045en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/89567
dc.description.abstractBACKGROUND Loss‐of‐function of Pax2 results in severe defects of the male reproductive system, and Pax2 expression is detected in mouse prostate lobes and human prostatic cancers. However, the role for Pax2 in prostate development remains poorly understood. METHODS The expression of Pax2 was examined by in situ hybridization at various developmental stages. Urogenital sinuses were dissected out at E18.5 from mouse Pax2 mutants and controls, cultured in vitro or grafted under the renal capsule of CD1 nude mice. The expression of prostate developmental regulatory factors was analyzed by semi‐quantitative real‐time PCR or immuohistochemistry. RESULTS Pax2 is expressed in the epithelial cells of prostate buds. Loss‐of‐function of Pax2 does not affect the initiation of prostatic buds, but in vitro culture assays show that the prostates of Pax2 mutants are hypomorphic and branching is severely disrupted compared to controls. RT‐PCR data from Pax2 mutant prostates demonstrate increased expression levels of dorsolateral prostate marker MSMB and ventral prostate marker SBP and dramatically reduced expression levels of anterior prostate marker TGM4. CONCLUSIONS Pax2 is essential for mouse prostate development and regulates prostatic ductal growth, branching, and lobe‐specific identity. These findings are important for understanding the molecular regulatory mechanisms in prostate development. Prostate 72:217–224, 2012. © 2011 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherPax2en_US
dc.subject.otherProstate Developmenten_US
dc.subject.otherUGSen_US
dc.subject.otherProstate Lobe‐Specific Markersen_US
dc.titleThe role of Pax2 in mouse prostate developmenten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDivision of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Pathology, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumUniversity of Michigan Medical Center, 109 Zina Pitcher, 2053 BSRB, Ann Arbor, MI 48109‐2200.en_US
dc.identifier.pmid21594883en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/89567/1/21424_ftp.pdf
dc.identifier.doi10.1002/pros.21424en_US
dc.identifier.sourceThe Prostateen_US
dc.identifier.citedreferenceMarker PC, Donjacour AA, Dahiya R, Cunha GR. Hormonal, cellular, and molecular control of prostatic development. Dev Biol 2003; 253 ( 2 ): 165 – 174.en_US
dc.identifier.citedreferenceCook C, Vezina CM, Allgeier SH, Shaw A, Yu M, Peterson RE, Bushman W. Noggin is required for normal lobe patterning and ductal budding in the mouse prostate. Dev Biol 2007; 312 ( 1 ): 217 – 230.en_US
dc.identifier.citedreferenceThielen JL, Volzing KG, Collier LS, Green LE, Largaespada DA, Marker PC. Markers of prostate region‐specific epithelial identity define anatomical locations in the mouse prostate that are molecularly similar to human prostate cancers. Differentiation 2007; 75 ( 1 ): 49 – 61.en_US
dc.identifier.citedreferenceCharest NJ, Zhou ZX, Lubahn DB, Olsen KL, Wilson EM, French FS. A frameshift mutation destabilizes androgen receptor messenger RNA in the Tfm mouse. Mol Endocrinol 1991; 5 ( 4 ): 573 – 581.en_US
dc.identifier.citedreferenceGaspar ML, Meo T, Bourgarel P, Guenet JL, Tosi M. A single base deletion in the Tfm androgen receptor gene creates a short‐lived messenger RNA that directs internal translation initiation. Proc Natl Acad Sci USA 1991; 88 ( 19 ): 8606 – 8610.en_US
dc.identifier.citedreferenceHe WW, Kumar MV, Tindall DJ. A frame‐shift mutation in the androgen receptor gene causes complete androgen insensitivity in the testicular‐feminized mouse. Nucleic Acids Res 1991; 19 ( 9 ): 2373 – 2378.en_US
dc.identifier.citedreferenceJarred RA, McPherson SJ, Bianco JJ, Couse JF, Korach KS, Risbridger GP. Prostate phenotypes in estrogen‐modulated transgenic mice. Trends Endocrinol Metab 2002; 13 ( 4 ): 163 – 168.en_US
dc.identifier.citedreferencePrins GS. Neonatal estrogen exposure induces lobe‐specific alterations in adult rat prostate androgen receptor expression. Endocrinology 1992; 130 ( 6 ): 3703 – 3714.en_US
dc.identifier.citedreferenceBhatia‐Gaur R, Donjacour AA, Sciavolino PJ, Kim M, Desai N, Young P, Norton CR, Gridley T, Cardiff RD, Cunha GR, Abate‐Shen C, Shen MM. Roles for Nkx3.1 in prostate development and cancer. Genes Dev 1999; 13 ( 8 ): 966 – 977.en_US
dc.identifier.citedreferenceSciavolino PJ, Abrams EW, Yang L, Austenberg LP, Shen MM, Abate‐Shen C. Tissue‐specific expression of murine Nkx3.1 in the male urogenital system. Dev Dyn 1997; 209 ( 1 ): 127 – 138.en_US
dc.identifier.citedreferenceTanaka M, Komuro I, Inagaki H, Jenkins NA, Copeland NG, Izumo S. Nkx3.1, a murine homolog of Drosophila bagpipe, regulates epithelial ductal branching and proliferation of the prostate and palatine glands. Dev Dyn 2000; 219 ( 2 ): 248 – 260.en_US
dc.identifier.citedreferenceEconomides KD, Capecchi MR. Hoxb13 is required for normal differentiation and secretory function of the ventral prostate. Development 2003; 130 ( 10 ): 2061 – 2069.en_US
dc.identifier.citedreferenceGao N, Ishii K, Mirosevich J, Kuwajima S, Oppenheimer SR, Roberts RL, Jiang M, Yu X, Shappell SB, Caprioli RM, Stoffel M, Hayward SW, Matusik RJ. Forkhead box A1 regulates prostate ductal morphogenesis and promotes epithelial cell maturation. Development 2005; 132 ( 15 ): 3431 – 3443.en_US
dc.identifier.citedreferenceMcMullin RP, Dobi A, Mutton LN, Orosz A, Maheshwari S, Shashikant CS, Bieberich CJ. A FOXA1‐binding enhancer regulates Hoxb13 expression in the prostate gland. Proc Natl Acad Sci USA 2010; 107 ( 1 ): 98 – 103.en_US
dc.identifier.citedreferenceFreestone SH, Marker P, Grace OC, Tomlinson DC, Cunha GR, Harnden P, Thomson AA. Sonic hedgehog regulates prostatic growth and epithelial differentiation. Dev Biol 2003; 264 ( 2 ): 352 – 362.en_US
dc.identifier.citedreferencePodlasek CA, Barnett DH, Clemens JQ, Bak PM, Bushman W. Prostate development requires Sonic hedgehog expressed by the urogenital sinus epithelium. Dev Biol 1999; 209 ( 1 ): 28 – 39.en_US
dc.identifier.citedreferenceDonjacour AA, Thomson AA, Cunha GR. FGF‐10 plays an essential role in the growth of the fetal prostate. Dev Biol 2003; 261 ( 1 ): 39 – 54.en_US
dc.identifier.citedreferenceJoesting MS, Cheever TR, Volzing KG, Yamaguchi TP, Wolf V, Naf D, Rubin JS, Marker PC. Secreted frizzled related protein 1 is a paracrine modulator of epithelial branching morphogenesis, proliferation, and secretory gene expression in the prostate. Dev Biol 2008; 317 ( 1 ): 161 – 173.en_US
dc.identifier.citedreferenceLamm ML, Podlasek CA, Barnett DH, Lee J, Clemens JQ, Hebner CM, Bushman W. Mesenchymal factor bone morphogenetic protein 4 restricts ductal budding and branching morphogenesis in the developing prostate. Dev Biol 2001; 232 ( 2 ): 301 – 314.en_US
dc.identifier.citedreferenceThomson AA, Cunha GR. Prostatic growth and development are regulated by FGF10. Development 1999; 126 ( 16 ): 3693 – 3701.en_US
dc.identifier.citedreferenceBrophy PD, Ostrom L, Lang KM, Dressler GR. Regulation of ureteric bud outgrowth by Pax2‐dependent activation of the glial derived neurotrophic factor gene. Development 2001; 128 ( 23 ): 4747 – 4756.en_US
dc.identifier.citedreferenceDressler GR, Wilkinson JE, Rothenpieler UW, Patterson LT, Williams‐Simons L, Westphal H. Deregulation of Pax‐2 expression in transgenic mice generates severe kidney abnormalities. Nature 1993; 362 ( 6415 ): 65 – 67.en_US
dc.identifier.citedreferenceRothenpieler UW, Dressler GR. Pax‐2 is required for mesenchyme‐to‐epithelium conversion during kidney development. Development 1993; 119 ( 3 ): 711 – 720.en_US
dc.identifier.citedreferenceChen Q, DeGraff DJ, Sikes RA. The developmental expression profile of PAX2 in the murine prostate. Prostate 2010; 70 ( 6 ): 654 – 665.en_US
dc.identifier.citedreferenceKhoubehi B, Kessling AM, Adshead JM, Smith GL, Smith RD, Ogden CW. Expression of the developmental and oncogenic PAX2 gene in human prostate cancer. J Urol 2001; 165 ( 6 Pt 1 ): 2115 – 2120.en_US
dc.identifier.citedreferenceTorres M, Gomez‐Pardo E, Dressler GR, Gruss P. Pax‐2 controls multiple steps of urogenital development. Development 1995; 121 ( 12 ): 4057 – 4065.en_US
dc.identifier.citedreferenceCapellini TD, Zewdu R, Di Giacomo G, Asciutti S, Kugler JE, Di Gregorio A, Selleri L. Pbx1/Pbx2 govern axial skeletal development by controlling Polycomb and Hox in mesoderm and Pax1/Pax9 in sclerotome. Dev Biol 2008; 321 ( 2 ): 500 – 514.en_US
dc.identifier.citedreferenceDressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P. Pax2, a new murine paired‐box‐containing gene and its expression in the developing excretory system. Development 1990; 109 ( 4 ): 787 – 795.en_US
dc.identifier.citedreferenceDoles JD, Vezina CM, Lipinski RJ, Peterson RE, Bushman W. Growth, morphogenesis, and differentiation during mouse prostate development in situ, in renal grafts, and in vitro. Prostate 2005; 65 ( 4 ): 390 – 399.en_US
dc.identifier.citedreferenceWellik DM, Hawkes PJ, Capecchi MR. Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev 2002; 16 ( 11 ): 1423 – 1432.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.