Show simple item record

Reorganization of mouse sperm lipid rafts by capacitation

dc.contributor.authorThaler, Catherine D.en_US
dc.contributor.authorThomas, Monzyen_US
dc.contributor.authorRamalie, Jenniffer R.en_US
dc.date.accessioned2012-01-05T22:07:48Z
dc.date.available2012-01-05T22:07:48Z
dc.date.issued2006-12en_US
dc.identifier.citationThaler, Catherine D.; Thomas, Monzy; Ramalie, Jenniffer R. (2006). "Reorganization of mouse sperm lipid rafts by capacitation ." Molecular Reproduction and Development 73(12): 1541-1549. <http://hdl.handle.net/2027.42/89579>en_US
dc.identifier.issn1040-452Xen_US
dc.identifier.issn1098-2795en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/89579
dc.description.abstractOne of the hallmarks of mammalian sperm capacitation is the loss of cholesterol from the plasma membrane. Cholesterol has been associated with the formation of detergent insoluble membrane microdomains in many cell types, and sperm from several mammalian species have been shown to contain detergent‐resistant membranes (DRMs). The change in cholesterol composition of the sperm plasma membrane during capacitation raises the question of whether the contents of DRMs are altered during this process. In this study, we investigated changes in protein composition of DRMs isolated from uncapacitated or capacitated mouse sperm. TX‐100 insoluble membranes were fractionated by sucrose flotation gradient centrifugation and analyzed by Western and lectin blotting, and capacitation‐related differences in protein composition were identified. Following capacitation, the detergent insoluble fractions moved to lighter positions on the sucrose gradients, reflecting a global change in density or composition. We identified several individual proteins that either became enriched or depleted in DRM fractions following capacitation. These data suggest that the physiological changes in sperm motility, ability to penetrate the zona pellucida (ZP), ZP responsiveness, and other capacitation‐dependent changes, may be due in part to a functional reorganization of plasma membrane microdomains. Mol. Reprod. Dev. 73: 1541–1549, 2006. © 2006 Wiley‐Liss, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherCapacitationen_US
dc.subject.otherLipid Raften_US
dc.subject.otherMembrane Organizationen_US
dc.titleReorganization of mouse sperm lipid rafts by capacitationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelObstetrics and Gynecologyen_US
dc.subject.hlbsecondlevelKinesiology and Sportsen_US
dc.subject.hlbsecondlevelWomen's and Gender Studiesen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelHumanitiesen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pathology, University of Michigan, M4233 Medical Science I 0602, Ann Arbor, MI 48109.en_US
dc.contributor.affiliationotherDepartment of Biology, University of Central Florida, Orlando, Floridaen_US
dc.contributor.affiliationotherHopkins Marine Station, Stanford University, 120 Ocean View Blvd., Pacific Grove, CA 93950.en_US
dc.identifier.pmid16897730en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/89579/1/20540_ftp.pdf
dc.identifier.doi10.1002/mrd.20540en_US
dc.identifier.sourceMolecular Reproduction and Developmenten_US
dc.identifier.citedreferenceBaker SS, Cardullo RA, Thaler CD. 2002. Sonication of mouse sperm membranes reveals distinct protein domains. Biol Reprod 66: 57 – 64.en_US
dc.identifier.citedreferenceBaker SS, Thomas M, Thaler CD. 2004. Sperm membrane dynamics assessed by changes in lectin fluorescence before and after capacitation. J Androl 25: 744 – 751.en_US
dc.identifier.citedreferenceBearer EL, Friend DS. 1990. Morphology of mammalian sperm membranes during differentiation, maturation, and capacitation. J Electron Microsc Tech 16: 281 – 297.en_US
dc.identifier.citedreferenceBelton RJ, Jr., Adams NL, Foltz KR. 2001. Isolation and characterization of sea urchin egg lipid rafts and their possible function during fertilization. Mol Reprod Dev 59: 294 – 305.en_US
dc.identifier.citedreferenceBrener E, Rubinstein S, Cohen G, Shternall K, Rivlin J, Breitbart H. 2003. Remodeling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction. Biol Reprod 68: 837 – 845.en_US
dc.identifier.citedreferenceBrown DA, Jacobson K. 2001. Microdomains, lipid rafts and caveolae. Traffic 2: 668 – 672.en_US
dc.identifier.citedreferenceBrown DA, London E. 1998. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14: 111 – 136.en_US
dc.identifier.citedreferenceCabello‐Agueros JF, Hernandez‐Gonzalez EO, Mujica A. 2003. The role of F‐actin cytoskeleton‐associated gelsolin in the guinea pig capacitation and acrosome reaction. Cell Motil Cytoskeleton 56: 94 – 108.en_US
dc.identifier.citedreferenceCardullo RA, Thaler CD. 2002. Function of the egg's extracellular matrix. In: Hardy DM, editor. Fertilization. San Diego: Academic Press. pp 119 – 152.en_US
dc.identifier.citedreferenceCardullo RA, Wolf DE. 1995. Distribution and dynamics of mouse sperm surface galactosyltransferase: Implications for mammalian fertilization. Biochemistry 34: 10027 – 10035.en_US
dc.identifier.citedreferenceChamberlain LH. 2004. Detergents as tools for the purification and classification of lipid rafts. FEBS Lett 559: 1 – 5.en_US
dc.identifier.citedreferenceChamberlain LH, Burgoyne RD, Gould GW. 2001. SNARE proteins are highly enriched in lipid rafts in PC12 cells: Implications for the spatial control of exocytosis. Proc Natl Acad Sci USA 98: 5619 – 5624.en_US
dc.identifier.citedreferenceCorselli J, Talbot P. 1987. In vitro penetration of hamster oocyte‐cumulus complexes using physiological numbers of sperm. Dev Biol 122: 227 – 242.en_US
dc.identifier.citedreferenceCowan AE, Koppel DE, Vargas LA, Hunnicutt GR. 2001. Guinea pig fertilin exhibits restricted lateral mobility in epididymal sperm and becomes freely diffusing during capacitation. Dev Biol 236: 502 – 509.en_US
dc.identifier.citedreferenceCross NL. 2004. Reorganization of lipid rafts during capacitation of human sperm. Biol Reprod 71: 1367 – 1373.en_US
dc.identifier.citedreferenceDelgado‐Buenrostro NL, Hernandez‐Gonzalez EO, Segura‐Nieto M, Mujica A. 2005. Actin polymerization in the equatorial and postacrosomal regions of guinea pig spermatozoa during the acrosome reaction is regulated by G proteins. Mol Reprod Dev 70: 198 – 210.en_US
dc.identifier.citedreferenceFielding CJ, Fielding PE. 2004. Membrane cholesterol and the regulation of signal transduction. Biochem Soc Trans 32: 65 – 69.en_US
dc.identifier.citedreferenceFlesch FM, Brouwers JF, Nievelstein PF, Verkleij AJ, van Golde LM, Colenbrander B, Gadella BM. 2001. Bicarbonate stimulated phospholipid scrambling induces cholesterol redistribution and enables cholesterol depletion in the sperm plasma membrane. J Cell Sci 114: 3543 – 3555.en_US
dc.identifier.citedreferenceFoster LJ, De Hoog CL, Mann M. 2003. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc Natl Acad Sci USA 100: 5813 – 5818.en_US
dc.identifier.citedreferenceGadella BM, Harrison RA. 2002. Capacitation induces cyclic adenosine 3′,5′‐monophosphate‐dependent, but apoptosis‐unrelated, exposure of aminophospholipids at the apical head plasma membrane of boar sperm cells. Biol Reprod 67: 340 – 350.en_US
dc.identifier.citedreferenceGolub T, Wacha S, Caroni P. 2004. Spatial and temporal control of signaling through lipid rafts. Curr Opin Neurobiol 14: 542 – 550.en_US
dc.identifier.citedreferenceHoessli DC, Ilangumaran S, Soltermann A, Robinson PJ, Borisch B, Nasir‐Ud‐Din. 2000. Signaling through sphingolipid microdomains of the plasma membrane: The concept of signaling platform. Glycoconj J 17: 191 – 197.en_US
dc.identifier.citedreferenceJaiswal BS, Eisenbach M. 2002. Capacitation. In: Hardy DM, editor. Fertilization. San Diego: Academic Press. pp 57 – 117.en_US
dc.identifier.citedreferenceJones R, Shalgi R, Hoyland J, Phillips DM. 1990. Topographical rearrangement of a plasma membrane antigen during capacitation of rat spermatozoa in vitro. Dev Biol 139: 349 – 362.en_US
dc.identifier.citedreferenceMadore N, Smith KL, Graham CH, Jen A, Brady K, Hall S, Morris R. 1999. Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J 18: 6917 – 6926.en_US
dc.identifier.citedreferenceMaier B, Medrano S, Sleight SB, Visconti PE, Scrable H. 2003. Developmental association of the synaptic activity‐regulated protein arc with the mouse acrosomal organelle and the sperm tail. Biol Reprod 68: 67 – 76.en_US
dc.identifier.citedreferenceOh P, Schnitzer JE. 2001. Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol Biol Cell 12: 685 – 698.en_US
dc.identifier.citedreferenceOtter T, King SM, Witman GB. 1988. A two‐step procedure for efficient electrotransfer of both high‐molecular‐weight (greater than 400,000) and low‐molecular weight (less than 20,000) proteins. Anal Biochem 162: 370 – 377.en_US
dc.identifier.citedreferencePeterson RN, Russell LD. 1985. The mammalian spermatozoon: A model for the study of regional specificity in plasma membrane organization and function. Tissue Cell 17: 769 – 791.en_US
dc.identifier.citedreferencePrior IA, Harding A, Yan J, Sluimer J, Parton RG, Hancock JF. 2001. GTP‐dependent segregation of H‐ras from lipid rafts is required for biological activity. Nat Cell Biol 3: 368 – 375.en_US
dc.identifier.citedreferenceSalaun C, James DJ, Chamberlain LH. 2004. Lipid rafts and the regulation of exocytosis. Traffic 5: 255 – 264.en_US
dc.identifier.citedreferenceSalaun C, Gould GW, Chamberlain LH. 2005. The SNARE proteins SNAP‐25 and SNAP‐23 display different affinities for lipid rafts in PC12 cells: Regulation by distinct cysteine‐rich domains. J Biol Chem 280: 1236 – 1240.en_US
dc.identifier.citedreferenceSaxena N, Peterson RN, Sharif S, Saxena NK, Russell LD. 1986. Changes in the organization of surface antigens during in‐vitro capacitation of boar spermatozoa as detected by monoclonal antibodies. J Reprod Fertil 178: 601 – 614.en_US
dc.identifier.citedreferenceSchnitzer JE, Liu J, Oh P. 1995a. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J Biol Chem 270: 14399 – 14404.en_US
dc.identifier.citedreferenceSchnitzer JE, McIntosh DP, Dvorak AM, Liu J, Oh P. 1995b. Separation of caveolae from associated microdomains of GPI‐anchored proteins. Science 269: 1435 – 1439.en_US
dc.identifier.citedreferenceSelvaraj V, Asano A, Buttke DE, McElwee JL, Nelson JL, Wolff CA, Merdiushev T, Fornes MW, Cohen AW, Lisanti MP, Rothblat GH, Kopf GS, Travis AJ. 2006. Segregation of micron‐scale membrane sub‐domains in live murine sperm. J Cell Physiol 206: 636 – 646.en_US
dc.identifier.citedreferenceShadan S, James PS, Howes EA, Jones R. 2004. Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa. Biol Reprod 71: 253 – 265.en_US
dc.identifier.citedreferenceSleight SB, Miranda PV, Plaskett NW, Maier B, Lysiak J, Scrable H, Herr JC, Visconti PE. 2005. Isolation and proteomic analysis of mouse sperm detergent‐resistant membrane fractions: Evidence for dissociation of lipid rafts during capacitation. Biol Reprod 2005.; 73: 721 – 729.en_US
dc.identifier.citedreferenceSowa G, Pypaert M, Sessa WC. 2001. Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc Natl Acad Sci USA 98: 14072 – 14077.en_US
dc.identifier.citedreferenceTalbot P. 1985. Sperm penetration through oocyte investments in mammals. Am J Anat 174: 331 – 346.en_US
dc.identifier.citedreferenceTravis AJ, Merdiushev T, Vargas LA, Jones BH, Purdon MA, Nipper RW, Galatioto J, Moss SB, Hunnicutt GR, Kopf GS. 2001. Expression and localization of caveolin‐1, and the presence of membrane rafts, in mouse and Guinea pig spermatozoa. Dev Biol 240: 599 – 610.en_US
dc.identifier.citedreferenceTrevino CL, Serrano CJ, Beltran C, Felix R, Darszon A. 2001. Identification of mouse trp homologs and lipid rafts from spermatogenic cells and sperm. FEBS Lett 509: 119 – 125.en_US
dc.identifier.citedreferencevan Gestel RA, Brewis IA, Ashton PR, Helms JB, Brouwers JF, Gadella BM. 2005. Capacitation‐dependent concentration of lipid rafts in the apical ridge head area of porcine sperm cells. Mol Hum Reprod 11: 583 – 590.en_US
dc.identifier.citedreferenceVisconti PE, Bailey JL, Moore GD, Pan D, Olds‐Clarke P, Kopf GS. 1995a. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121: 1129 – 1137.en_US
dc.identifier.citedreferenceVisconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, Olds‐Clarke P, Kopf GS. 1995b. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP‐dependent pathway. Development 121: 1139 – 1150.en_US
dc.identifier.citedreferenceVisconti PE, Olds‐Clarke P, Moss SB, Kalab P, Travis AJ, de las Heras M, Kopf GS. 1996. Properties and localization of a tyrosine phosphorylated form of hexokinase in mouse sperm. Mol Reprod Dev 43: 82 – 93.en_US
dc.identifier.citedreferenceVisconti PE, Galantino‐Homer H, Ning X, Moore GD, Valenzuela JP, Jorgez CJ, Alvarez JG, Kopf GS. 1999a. Cholesterol efflux‐mediated signal transduction in mammalian sperm. beta‐cyclodextrins initiate transmembrane signaling leading to an increase in protein tyrosine phosphorylation and capacitation. J Biol Chem 274: 3235 – 3242.en_US
dc.identifier.citedreferenceVisconti PE, Ning X, Fornes MW, Alvarez JG, Stein P, Connors SA, Kopf GS. 1999b. Cholesterol efflux‐mediated signal transduction in mammalian sperm: Cholesterol release signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation. Dev Biol 214: 429 – 443.en_US
dc.identifier.citedreferenceWard CR, Kopf GS. 1993. Molecular events mediating sperm activation. Dev Biol 158: 9 – 34.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.