Show simple item record

How do they do Wnt they do?: regulation of transcription by the Wnt/β‐catenin pathway

dc.contributor.authorArchbold, H. C.en_US
dc.contributor.authorYang, Y. X.en_US
dc.contributor.authorChen, L.en_US
dc.contributor.authorCadigan, K. M.en_US
dc.date.accessioned2012-01-05T22:07:52Z
dc.date.available2013-03-04T15:29:55Zen_US
dc.date.issued2012-01en_US
dc.identifier.citationArchbold, H. C.; Yang, Y. X.; Chen, L.; Cadigan, K. M. (2012). "How do they do Wnt they do?: regulation of transcription by the Wnt/β‐catenin pathway." Acta Physiologica 204(1). <http://hdl.handle.net/2027.42/89581>en_US
dc.identifier.issn1748-1708en_US
dc.identifier.issn1748-1716en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/89581
dc.description.abstractWnt/β‐catenin signalling is known to play many roles in metazoan development and tissue homeostasis. Misregulation of the pathway has also been linked to many human diseases. In this review, specific aspects of the pathway’s involvement in these processes are discussed, with an emphasis on how Wnt/β‐catenin signalling regulates gene expression in a cell and temporally specific manner. The T‐cell factor (TCF) family of transcription factors, which mediate a large portion of Wnt/β‐catenin signalling, will be discussed in detail. Invertebrates contain a single TCF gene that contains two DNA‐binding domains, the high mobility group (HMG) domain and the C‐clamp, which increases the specificity of DNA binding. In vertebrates, the situation is more complex, with four TCF genes producing many isoforms that contain the HMG domain, but only some of which possess a C‐clamp. Vertebrate TCFs have been reported to act in concert with many other transcription factors, which may explain how they obtain sufficient specificity for specific DNA sequences, as well as how they achieve a wide diversity of transcriptional outputs in different cells.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherC‐Clampen_US
dc.subject.otherHigh Mobility Group Domainen_US
dc.subject.otherLymphoid Enhancer‐Binding Factor 1en_US
dc.subject.otherT‐Cell Factoren_US
dc.subject.otherWnten_US
dc.subject.otherβ‐Cateninen_US
dc.titleHow do they do Wnt they do?: regulation of transcription by the Wnt/β‐catenin pathwayen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationum Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USAen_US
dc.identifier.pmid21624092en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/89581/1/j.1748-1716.2011.02293.x.pdf
dc.identifier.doi10.1111/j.1748-1716.2011.02293.xen_US
dc.identifier.sourceActa Physiologicaen_US
dc.identifier.citedreferenceAdamska, M., Larroux, C., Adamski, M., Green, K., Lovas, E., Koop, D., Richards, G.S., Zwafink, C. & Degnan, B.M. 2010. Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica. Evol Dev 12, 494 – 518.en_US
dc.identifier.citedreferenceAfouda, B.A., Martin, J., Liu, F., Ciau‐Uitz, A., Patient, R. & Hoppler, S. 2008. GATA transcription factors integrate Wnt signalling during heart development. Development 135, 3185 – 3190.en_US
dc.identifier.citedreferenceAi, D., Fu, X., Wang, J., Lu, M.F., Chen, L., Baldini, A., Klein, W.H. & Martin, J.F. 2007. Canonical Wnt signaling functions in second heart field to promote right ventricular growth. Proc Natl Acad Sci USA 104, 9319 – 9324.en_US
dc.identifier.citedreferenceAlfieri, C.M., Cheek, J., Chakraborty, S. & Yutzey, K.E. 2010. Wnt signaling in heart valve development and osteogenic gene induction. Dev Biol 338, 127 – 135.en_US
dc.identifier.citedreferenceAlmeida, M., Han, L., Martin‐Millan, M., O’Brien, C.A. & Manolagas, S.C. 2007. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta‐catenin from T cell factor‐ to forkhead box O‐mediated transcription. J Biol Chem 282, 27298 – 27305.en_US
dc.identifier.citedreferenceAmen, M., Liu, X., Vadlamudi, U., Elizondo, G., Diamond, E., Engelhardt, J.F. & Amendt, B.A. 2007. PITX2 and beta‐catenin interactions regulate Lef‐1 isoform expression. Mol Cell Biol 27, 7560 – 7573.en_US
dc.identifier.citedreferenceArce, L., Yokoyama, N.N. & Waterman, M.L. 2006. Diversity of LEF/TCF action in development and disease. Oncogene 25, 7492 – 7504.en_US
dc.identifier.citedreferenceArmengol, C., Cairo, S., Fabre, M. & Buendia, M.A. 2009. Wnt signaling and hepatocarcinogenesis: the hepatoblastoma model. Int J Biochem Cell Biol 43, 265 – 270.en_US
dc.identifier.citedreferenceAtcha, F.A., Munguia, J.E., Li, T.W., Hovanes, K. & Waterman, M.L. 2003. A new beta‐catenin‐dependent activation domain in T cell factor. J Biol Chem 278, 16169 – 16175.en_US
dc.identifier.citedreferenceAtcha, F.A., Syed, A., Wu, B., Hoverter, N.P., Yokoyama, N.N., Ting, J.H., Munguia, J.E., Mangalam, H.J., Marsh, J.L. & Waterman, M.L. 2007. A unique DNA binding domain converts T‐cell factors into strong Wnt effectors. Mol Cell Biol 27, 8352 – 8363.en_US
dc.identifier.citedreferenceAulehla, A., Wehrle, C., Brand‐Saberi, B., Kemler, R., Gossler, A., Kanzler, B. & Herrmann, B.G. 2003. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell 4, 395 – 406.en_US
dc.identifier.citedreferenceBaker, N.E. 1988. Embryonic and imaginal requirements for wingless, a segment‐polarity gene in Drosophila. Dev Biol 125, 96 – 108.en_US
dc.identifier.citedreferenceBaker, N.E. 2007. Patterning signals and proliferation in Drosophila imaginal discs. Curr Opin Genet Dev 17, 287 – 293.en_US
dc.identifier.citedreferenceBalmelle, N., Zamarreno, N., Krangel, M.S. & Hernandez‐Munain, C. 2004. Developmental activation of the TCR alpha enhancer requires functional collaboration among proteins bound inside and outside the core enhancer. J Immunol 173, 5054 – 5063.en_US
dc.identifier.citedreferenceBarembaum, M. & Bronner‐Fraser, M. 2005. Early steps in neural crest specification. Semin Cell Dev Biol 16, 642 – 646.en_US
dc.identifier.citedreferenceBarker, N. & Clevers, H. 2010. Leucine‐rich repeat‐containing G‐protein‐coupled receptors as markers of adult stem cells. Gastroenterology 138, 1681 – 1696.en_US
dc.identifier.citedreferenceBarolo, S. 2006. Transgenic Wnt/TCF pathway reporters: all you need is Lef? Oncogene 25, 7505 – 7511.en_US
dc.identifier.citedreferenceBauer, A., Chauvet, S., Huber, O., Usseglio, F., Rothbacher, U., Aragnol, D., Kemler, R. & Pradel, J. 2000. Pontin52 and reptin52 function as antagonistic regulators of beta‐catenin signalling activity. EMBO J 19, 6121 – 6130.en_US
dc.identifier.citedreferencevan Beest, M., Dooijes, D., van De Wetering, M., Kjaerulff, S., Bonvin, A., Nielsen, O. & Clevers, H. 2000. Sequence‐specific high mobility group box factors recognize 10–12‐base pair minor groove motifs. J Biol Chem 275, 27266 – 27273.en_US
dc.identifier.citedreferenceBehrens, J., von Kries, J.P., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R. & Birchmeier, W. 1996. Functional interaction of beta‐catenin with the transcription factor LEF‐1. Nature 382, 638 – 642.en_US
dc.identifier.citedreferenceBeildeck, M.E., Gelmann, E.P. & Byers, S.W. 2010. Cross‐regulation of signaling pathways: an example of nuclear hormone receptors and the canonical Wnt pathway. Exp Cell Res 316, 1763 – 1772.en_US
dc.identifier.citedreferenceBeland, M., Pilon, N., Houle, M., Oh, K., Sylvestre, J.R., Prinos, P. & Lohnes, D. 2004. Cdx1 autoregulation is governed by a novel Cdx1‐LEF1 transcription complex. Mol Cell Biol 24, 5028 – 5038.en_US
dc.identifier.citedreferenceBischoff, M. & Schnabel, R. 2006. A posterior centre establishes and maintains polarity of the Caenorhabditis elegans embryo by a Wnt‐dependent relay mechanism. PLoS Biol 4, e396.en_US
dc.identifier.citedreferenceBlahnik, K.R., Dou, L., O’Geen, H., McPhillips, T., Xu, X., Cao, A.R., Iyengar, S., Nicolet, C.M., Ludascher, B., Korf, I. & Farnham, P.J. 2010. Sole‐Search: an integrated analysis program for peak detection and functional annotation using ChIP‐seq data. Nucleic Acids Res 38, e13.en_US
dc.identifier.citedreferenceBlanpain, C. & Fuchs, E. 2009. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10, 207 – 217.en_US
dc.identifier.citedreferenceBlanpain, C., Horsley, V. & Fuchs, E. 2007. Epithelial stem cells: turning over new leaves. Cell 128, 445 – 458.en_US
dc.identifier.citedreferenceBlauwkamp, T.A., Chang, M.V. & Cadigan, K.M. 2008. Novel TCF‐binding sites specify transcriptional repression by Wnt signalling. EMBO J 27, 1436 – 1446.en_US
dc.identifier.citedreferenceBodmer, R. & Venkatesh, T.V. 1998. Heart development in Drosophila and vertebrates: conservation of molecular mechanisms. Dev Genet 22, 181 – 186.en_US
dc.identifier.citedreferenceBottomly, D., Kyler, S.L., McWeeney, S.K. & Yochum, G.S. 2010. Identification of {beta}‐catenin binding regions in colon cancer cells using ChIP‐Seq. Nucleic Acids Res 38, 5735 – 5745.en_US
dc.identifier.citedreferenceBrannon, M., Gomperts, M., Sumoy, L., Moon, R.T. & Kimelman, D. 1997. A beta‐catenin/XTcf‐3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev 11, 2359 – 2370.en_US
dc.identifier.citedreferenceBrocardo, M. & Henderson, B.R. 2008. APC shuttling to the membrane, nucleus and beyond. Trends Cell Biol 18, 587 – 596.en_US
dc.identifier.citedreferenceBroun, M., Gee, L., Reinhardt, B. & Bode, H.R. 2005. Formation of the head organizer in hydra involves the canonical Wnt pathway. Development 132, 2907 – 2916.en_US
dc.identifier.citedreferenceBrunner, E., Peter, O., Schweizer, L. & Basler, K. 1997. Pangolin encodes a Lef‐1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385, 829 – 833.en_US
dc.identifier.citedreferenceCadigan, K.M. 2008. Wnt‐beta‐catenin signaling. Curr Biol 18, R943 – R947.en_US
dc.identifier.citedreferenceCadigan, K.M. & Peifer, M. 2009. Wnt signaling from development to disease: insights from model systems. Cold Spring Harb Perspect Biol 1, a002881.en_US
dc.identifier.citedreferenceCai, C.L., Liang, X., Shi, Y., Chu, P.H., Pfaff, S.L., Chen, J. & Evans, S. 2003. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5, 877 – 889.en_US
dc.identifier.citedreferenceCarlsson, P., Waterman, M.L. & Jones, K.A. 1993. The hLEF/TCF‐1 alpha HMG protein contains a context‐dependent transcriptional activation domain that induces the TCR alpha enhancer in T cells. Genes Dev 7, 2418 – 2430.en_US
dc.identifier.citedreferenceCastillo, H.A., Cravo, R.M., Azambuja, A.P., Simoes‐Costa, M.S., Sura‐Trueba, S., Gonzalez, J., Slonimsky, E., Almeida, K., Abreu, J.G., de Almeida, M.A. et al. 2010. Insights into the organization of dorsal spinal cord pathways from an evolutionarily conserved raldh2 intronic enhancer. Development 137, 507 – 518.en_US
dc.identifier.citedreferenceCavallo, R.A., Cox, R.T., Moline, M.M., Roose, J., Polevoy, G.A., Clevers, H., Peifer, M. & Bejsovec, A. 1998. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395, 604 – 608.en_US
dc.identifier.citedreferenceCha, S.W., Tadjuidje, E., Tao, Q., Wylie, C. & Heasman, J. 2008. Wnt5a and Wnt11 interact in a maternal Dkk1‐regulated fashion to activate both canonical and non‐canonical signaling in Xenopus axis formation. Development 135, 3719 – 3729.en_US
dc.identifier.citedreferenceChacon, M.A., Varela‐Nallar, L. & Inestrosa, N.C. 2008. Frizzled‐1 is involved in the neuroprotective effect of Wnt3a against Abeta oligomers. J Cell Physiol 217, 215 – 227.en_US
dc.identifier.citedreferenceChakladar, A., Dubeykovskiy, A., Wojtukiewicz, L.J., Pratap, J., Lei, S. & Wang, T.C. 2005. Synergistic activation of the murine gastrin promoter by oncogenic Ras and beta‐catenin involves SMAD recruitment. Biochem Biophys Res Commun 336, 190 – 196.en_US
dc.identifier.citedreferenceChamorro, M.N., Schwartz, D.R., Vonica, A., Brivanlou, A.H., Cho, K.R. & Varmus, H.E. 2005. FGF‐20 and DKK1 are transcriptional targets of beta‐catenin and FGF‐20 is implicated in cancer and development. EMBO J 24, 73 – 84.en_US
dc.identifier.citedreferenceChang, J.L., Chang, M.V., Barolo, S. & Cadigan, K.M. 2008a. Regulation of the feedback antagonist naked cuticle by Wingless signaling. Dev Biol 321, 446 – 454.en_US
dc.identifier.citedreferenceChang, M.V., Chang, J.L., Gangopadhyay, A., Shearer, A. & Cadigan, K.M. 2008b. Activation of wingless targets requires bipartite recognition of DNA by TCF. Curr Biol 18, 1877 – 1881.en_US
dc.identifier.citedreferenceChen, S., McLean, S., Carter, D.E. & Leask, A. 2007. The gene expression profile induced by Wnt 3a in NIH 3T3 fibroblasts. J Cell Commun Signal 1, 175 – 183.en_US
dc.identifier.citedreferenceChera, S., Ghila, L., Dobretz, K., Wenger, Y., Bauer, C., Buzgariu, W., Martinou, J.C. & Galliot, B. 2009. Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell 17, 279 – 289.en_US
dc.identifier.citedreferenceClevers, H. 2006. Wnt/beta‐catenin signaling in development and disease. Cell 127, 469 – 480.en_US
dc.identifier.citedreferenceCohen, P. & Goedert, M. 2004. GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov 3, 479 – 487.en_US
dc.identifier.citedreferenceCohen, E.D., Wang, Z., Lepore, J.J., Lu, M.M., Taketo, M.M., Epstein, D.J. & Morrisey, E.E. 2007. Wnt/beta‐catenin signaling promotes expansion of Isl‐1‐positive cardiac progenitor cells through regulation of FGF signaling. J Clin Invest 117, 1794 – 1804.en_US
dc.identifier.citedreferenceCohen, E.D., Tian, Y. & Morrisey, E.E. 2008. Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self‐renewal. Development 135, 789 – 798.en_US
dc.identifier.citedreferenceCole, M.F., Johnstone, S.E., Newman, J.J., Kagey, M.H. & Young, R.A. 2008. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 22, 746 – 755.en_US
dc.identifier.citedreferenceCox, R.T., McEwen, D.G., Myster, D.L., Duronio, R.J., Loureiro, J. & Peifer, M. 2000. A screen for mutations that suppress the phenotype of Drosophila armadillo, the beta‐catenin homolog. Genetics 155, 1725 – 1740.en_US
dc.identifier.citedreferenceCuilliere‐Dartigues, P., El‐Bchiri, J., Krimi, A., Buhard, O., Fontanges, P., Flejou, J.F., Hamelin, R. & Duval, A. 2006. TCF‐4 isoforms absent in TCF‐4 mutated MSI‐H colorectal cancer cells colocalize with nuclear CtBP and repress TCF‐4‐mediated transcription. Oncogene 25, 4441 – 4448.en_US
dc.identifier.citedreferenceDasGupta, R. & Fuchs, E. 1999. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126, 4557 – 4568.en_US
dc.identifier.citedreferenceDasGupta, R., Kaykas, A., Moon, R.T. & Perrimon, N. 2005. Functional genomic analysis of the Wnt‐wingless signaling pathway. Science 308, 826 – 833.en_US
dc.identifier.citedreferenceDavidson, G. & Niehrs, C. 2010. Emerging links between CDK cell cycle regulators and Wnt signaling. Trends Cell Biol 20, 453 – 460.en_US
dc.identifier.citedreferenceDavidson, A.J. & Zon, L.I. 2006. The caudal‐related homeobox genes cdx1a and cdx4 act redundantly to regulate hox gene expression and the formation of putative hematopoietic stem cells during zebrafish embryogenesis. Dev Biol 292, 506 – 518.en_US
dc.identifier.citedreferenceDe Robertis, E.M. & Kuroda, H. 2004. Dorsal–ventral patterning and neural induction in Xenopus embryos. Annu Rev Cell Dev Biol 20, 285 – 308.en_US
dc.identifier.citedreferenceDelmas, V., Beermann, F., Martinozzi, S., Carreira, S., Ackermann, J., Kumasaka, M., Denat, L., Goodall, J., Luciani, F., Viros, A., Demirkan, N., Bastian, B.C., Goding, C.R. & Larue, L. 2007. Beta‐catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N‐Ras in melanoma development. Genes Dev 21, 2923 – 2935.en_US
dc.identifier.citedreferenceDomenzain‐Reyna, C., Hernandez, D., Miquel‐Serra, L., Docampo, M.J., Badenas, C., Fabra, A. & Bassols, A. 2009. Structure and regulation of the versican promoter: the versican promoter is regulated by AP‐1 and TCF transcription factors in invasive human melanoma cells. J Biol Chem 284, 12306 – 12317.en_US
dc.identifier.citedreferenceDorsky, R.I., Sheldahl, L.C. & Moon, R.T. 2002. A transgenic Lef1/beta‐catenin‐dependent reporter is expressed in spatially restricted domains throughout zebrafish development. Dev Biol 241, 229 – 237.en_US
dc.identifier.citedreferenceDorsky, R.I., Itoh, M., Moon, R.T. & Chitnis, A. 2003. Two tcf3 genes cooperate to pattern the zebrafish brain. Development 130, 1937 – 1947.en_US
dc.identifier.citedreferenceDuffy, D.J., Plickert, G., Kuenzel, T., Tilmann, W. & Frank, U. 2010. Wnt signaling promotes oral but suppresses aboral structures in Hydractinia metamorphosis and regeneration. Development 137, 3057 – 3066.en_US
dc.identifier.citedreferenceDuman‐Scheel, M., Johnston, L.A. & Du, W. 2004. Repression of dMyc expression by Wingless promotes Rbf‐induced G1 arrest in the presumptive Drosophila wing margin. Proc Natl Acad Sci USA 101, 3857 – 3862.en_US
dc.identifier.citedreferenceDunty, W.C. Jr, Biris, K.K., Chalamalasetty, R.B., Taketo, M.M., Lewandoski, M. & Yamaguchi, T.P. 2008. Wnt3a/beta‐catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development 135, 85 – 94.en_US
dc.identifier.citedreferenceDyer, L.A. & Kirby, M.L. 2009. The role of secondary heart field in cardiac development. Dev Biol 336, 137 – 144.en_US
dc.identifier.citedreferenceEilers, M. & Eisenman, R.N. 2008. Myc’s broad reach. Genes Dev 22, 2755 – 2766.en_US
dc.identifier.citedreferenceEivers, E., Demagny, H. & De Robertis, E.M. 2009. Integration of BMP and Wnt signaling via vertebrate Smad1/5/8 and Drosophila Mad. Cytokine Growth Factor Rev 20, 357 – 365.en_US
dc.identifier.citedreferenceEl Wakil, A. & Lalli, E. 2011. The Wnt/beta‐catenin pathway in adrenocortical development and cancer. Mol Cell Endocrinol 332, 32 – 37.en_US
dc.identifier.citedreferenceElkouby, Y.M., Elias, S., Casey, E.S., Blythe, S.A., Tsabar, N., Klein, P.S., Root, H., Liu, K.J. & Frank, D. 2010. Mesodermal Wnt signaling organizes the neural plate via Meis3. Development 137, 1531 – 1541.en_US
dc.identifier.citedreferenceEngleka, M.J. & Kessler, D.S. 2001. Siamois cooperates with TGFbeta signals to induce the complete function of the Spemann‐Mangold organizer. Int J Dev Biol 45, 241 – 250.en_US
dc.identifier.citedreferenceEssers, M.A., de Vries‐Smits, L.M., Barker, N., Polderman, P.E., Burgering, B.M. & Korswagen, H.C. 2005. Functional interaction between beta‐catenin and FOXO in oxidative stress signaling. Science 308, 1181 – 1184.en_US
dc.identifier.citedreferenceEvans, S.M. 1999. Vertebrate tinman homologues and cardiac differentiation. Semin Cell Dev Biol 10, 73 – 83.en_US
dc.identifier.citedreferenceFaas, L. & Isaacs, H.V. 2009. Overlapping functions of Cdx1, Cdx2, and Cdx4 in the development of the amphibian Xenopus tropicalis. Dev Dyn 238, 835 – 852.en_US
dc.identifier.citedreferenceFan, Y. & Bergmann, A. 2008. Apoptosis‐induced compensatory proliferation. The Cell is dead. Long live the Cell! Trends Cell Biol 18, 467 – 473.en_US
dc.identifier.citedreferenceFan, M.J., Gruning, W., Walz, G. & Sokol, S.Y. 1998. Wnt signaling and transcriptional control of Siamois in Xenopus embryos. Proc Natl Acad Sci USA 95, 5626 – 5631.en_US
dc.identifier.citedreferenceFang, M., Li, J., Blauwkamp, T., Bhambhani, C., Campbell, N. & Cadigan, K.M. 2006. C‐terminal‐binding protein directly activates and represses Wnt transcriptional targets in Drosophila. EMBO J 25, 2735 – 2745.en_US
dc.identifier.citedreferencevan der Flier, L.G., van Gijn, M.E., Hatzis, P., Kujala, P., Haegebarth, A., Stange, D.E., Begthel, H., van den Born, M., Guryev, V., Oving, I., van Es, J.H., Barker, N., Peters, P.J., van de Wetering, M. & Clevers, H. 2009. Transcription factor achaete scute‐like 2 controls intestinal stem cell fate. Cell 136, 903 – 912.en_US
dc.identifier.citedreferenceFoley, A.C. & Mercola, M. 2005. Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev 19, 387 – 396.en_US
dc.identifier.citedreferenceFujino, T., Asaba, H., Kang, M.J., Ikeda, Y., Sone, H., Takada, S., Kim, D.H., Ioka, R.X., Ono, M., Tomoyori, H. et al. 2003. Low‐density lipoprotein receptor‐related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose‐induced insulin secretion. Proc Natl Acad Sci USA 100, 229 – 234.en_US
dc.identifier.citedreferenceGalceran, J., Farinas, I., Depew, M.J., Clevers, H. & Grosschedl, R. 1999. Wnt3a−/−‐like phenotype and limb deficiency in Lef1(‐/‐)Tcf1(‐/‐) mice. Genes Dev 13, 709 – 717.en_US
dc.identifier.citedreferenceGalliot, B. & Chera, S. 2010. The Hydra model: disclosing an apoptosis‐driven generator of Wnt‐based regeneration. Trends Cell Biol 20, 514 – 523.en_US
dc.identifier.citedreferenceGan, X.Q., Wang, J.Y., Xi, Y., Wu, Z.L., Li, Y.P. & Li, L. 2008. Nuclear Dvl, c‐Jun, beta‐catenin, and TCF form a complex leading to stabilization of beta‐catenin‐TCF interaction. J Cell Biol 180, 1087 – 1100.en_US
dc.identifier.citedreferenceGaunt, S.J., Drage, D. & Cockley, A. 2003. Vertebrate caudal gene expression gradients investigated by use of chick cdx‐A/lacZ and mouse cdx‐1/lacZ reporters in transgenic mouse embryos: evidence for an intron enhancer. Mech Dev 120, 573 – 586.en_US
dc.identifier.citedreferenceGay, F., Calvo, D., Lo, M.C., Ceron, J., Maduro, M., Lin, R. & Shi, Y. 2003. Acetylation regulates subcellular localization of the Wnt signaling nuclear effector POP‐1. Genes Dev 17, 717 – 722.en_US
dc.identifier.citedreferenceGe, X. & Wang, X. 2010. Role of Wnt canonical pathway in hematological malignancies. J Hematol Oncol 3, 33.en_US
dc.identifier.citedreferenceGee, L., Hartig, J., Law, L., Wittlieb, J., Khalturin, K., Bosch, T.C. & Bode, H.R. 2010. Beta‐catenin plays a central role in setting up the head organizer in hydra. Dev Biol 340, 116 – 124.en_US
dc.identifier.citedreferencevan Genderen, C., Okamura, R.M., Farinas, I., Quo, R.G., Parslow, T.G., Bruhn, L. & Grosschedl, R. 1994. Development of several organs that require inductive epithelial‐mesenchymal interactions is impaired in LEF‐1‐deficient mice. Genes Dev 8, 2691 – 2703.en_US
dc.identifier.citedreferenceGessert, S. & Kuhl, M. 2010. The multiple phases and faces of wnt signaling during cardiac differentiation and development. Circ Res 107, 186 – 199.en_US
dc.identifier.citedreferenceGiese, K. & Grosschedl, R. 1993. LEF‐1 contains an activation domain that stimulates transcription only in a specific context of factor‐binding sites. EMBO J 12, 4667 – 4676.en_US
dc.identifier.citedreferenceGiese, K., Amsterdam, A. & Grosschedl, R. 1991. DNA‐binding properties of the HMG domain of the lymphoid‐specific transcriptional regulator LEF‐1. Genes Dev 5, 2567 – 2578.en_US
dc.identifier.citedreferenceGiese, K., Cox, J. & Grosschedl, R. 1992. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69, 185 – 195.en_US
dc.identifier.citedreferenceGiese, K., Kingsley, C., Kirshner, J.R. & Grosschedl, R. 1995. Assembly and function of a TCR alpha enhancer complex is dependent on LEF‐1‐induced DNA bending and multiple protein–protein interactions. Genes Dev 9, 995 – 1008.en_US
dc.identifier.citedreferenceGiraldez, A.J. & Cohen, S.M. 2003. Wingless and Notch signaling provide cell survival cues and control cell proliferation during wing development. Development 130, 6533 – 6543.en_US
dc.identifier.citedreferenceGitler, A.D., Lu, M.M., Jiang, Y.Q., Epstein, J.A. & Gruber, P.J. 2003. Molecular markers of cardiac endocardial cushion development. Dev Dyn 228, 643 – 650.en_US
dc.identifier.citedreferenceGrigoryan, T., Wend, P., Klaus, A. & Birchmeier, W. 2008. Deciphering the function of canonical Wnt signals in development and disease: conditional loss‐ and gain‐of‐function mutations of beta‐catenin in mice. Genes Dev 22, 2308 – 2341.en_US
dc.identifier.citedreferenceGuder, C., Philipp, I., Lengfeld, T., Watanabe, H., Hobmayer, B. & Holstein, T.W. 2006. The Wnt code: cnidarians signal the way. Oncogene 25, 7450 – 7460.en_US
dc.identifier.citedreferenceGurley, K.A., Rink, J.C. & Sanchez Alvarado, A. 2008. Beta‐catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319, 323 – 327.en_US
dc.identifier.citedreferenceHaegebarth, A. & Clevers, H. 2009. Wnt signaling, lgr5, and stem cells in the intestine and skin. Am J Pathol 174, 715 – 721.en_US
dc.identifier.citedreferenceHalfon, M.S., Carmena, A., Gisselbrecht, S., Sackerson, C.M., Jimenez, F., Baylies, M.K. & Michelson, A.M. 2000. Ras pathway specificity is determined by the integration of multiple signal‐activated and tissue‐restricted transcription factors. Cell 103, 63 – 74.en_US
dc.identifier.citedreferenceHallikas, O., Palin, K., Sinjushina, N., Rautiainen, R., Partanen, J., Ukkonen, E. & Taipale, J. 2006. Genome‐wide prediction of mammalian enhancers based on analysis of transcription‐factor binding affinity. Cell 124, 47 – 59.en_US
dc.identifier.citedreferenceHamblet, N.S., Lijam, N., Ruiz‐Lozano, P., Wang, J., Yang, Y., Luo, Z., Mei, L., Chien, K.R., Sussman, D.J. & Wynshaw‐Boris, A. 2002. Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure. Development 129, 5827 – 5838.en_US
dc.identifier.citedreferenceHan, Z., Fujioka, M., Su, M., Liu, M., Jaynes, J.B. & Bodmer, R. 2002. Transcriptional integration of competence modulated by mutual repression generates cell‐type specificity within the cardiogenic mesoderm. Dev Biol 252, 225 – 240.en_US
dc.identifier.citedreferenceHatzis, P., van der Flier, L.G., van Driel, M.A., Guryev, V., Nielsen, F., Denissov, S., Nijman, I.J., Koster, J., Santo, E.E., Welboren, W., Versteeg, R., Cuppen, E., van de Wetering, M., Clevers, H. & Stunnenberg, H.G. 2008. Genome‐wide pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells. Mol Cell Biol 28, 2732 – 2744.en_US
dc.identifier.citedreferenceHe, T.C., Sparks, A.B., Rago, C., Hermeking, H., Zawel, L., da Costa, L.T., Morin, P.J., Vogelstein, B. & Kinzler, K.W. 1998. Identification of c‐MYC as a target of the APC pathway. Science 281, 1509 – 1512.en_US
dc.identifier.citedreferenceHeasman, J., Crawford, A., Goldstone, K., Garner‐Hamrick, P., Gumbiner, B., McCrea, P., Kintner, C., Noro, C.Y. & Wylie, C. 1994. Overexpression of cadherins and underexpression of beta‐catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79, 791 – 803.en_US
dc.identifier.citedreferenceHecht, A. & Stemmler, M.P. 2003. Identification of a promoter‐specific transcriptional activation domain at the C terminus of the Wnt effector protein T‐cell factor 4. J Biol Chem 278, 3776 – 3785.en_US
dc.identifier.citedreferenceHeemskerk, J., DiNardo, S., Kostriken, R. & O’Farrell, P.H. 1991. Multiple modes of engrailed regulation in the progression towards cell fate determination. Nature 352, 404 – 410.en_US
dc.identifier.citedreferenceHerman, M. 2001. C. elegans POP‐1/TCF functions in a canonical Wnt pathway that controls cell migration and in a noncanonical Wnt pathway that controls cell polarity. Development 128, 581 – 590.en_US
dc.identifier.citedreferenceHerranz, H. & Milan, M. 2008. Signalling molecules, growth regulators and cell cycle control in Drosophila. Cell Cycle 7, 3335 – 3337.en_US
dc.identifier.citedreferenceHikasa, H. & Sokol, S.Y. 2011. Phosphorylation of TCF proteins by homeodomain‐interacting protein kinase 2. J Biol Chem 286, 12093 – 12100.en_US
dc.identifier.citedreferenceHikasa, H., Ezan, J., Itoh, K., Li, X., Klymkowsky, M.W. & Sokol, S.Y. 2010. Regulation of TCF3 by Wnt‐dependent phosphorylation during vertebrate axis specification. Dev Cell 19, 521 – 532.en_US
dc.identifier.citedreferenceHobmayer, B., Rentzsch, F., Kuhn, K., Happel, C.M., von Laue, C.C., Snyder, P., Rothbacher, U. & Holstein, T.W. 2000. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407, 186 – 189.en_US
dc.identifier.citedreferenceHoogeboom, D., Essers, M.A., Polderman, P.E., Voets, E., Smits, L.M. & Burgering, B.M. 2008. Interaction of FOXO with beta‐catenin inhibits beta‐catenin/T cell factor activity. J Biol Chem 283, 9224 – 9230.en_US
dc.identifier.citedreferenceHouston, D.W., Kofron, M., Resnik, E., Langland, R., Destree, O., Wylie, C. & Heasman, J. 2002. Repression of organizer genes in dorsal and ventral Xenopus cells mediated by maternal XTcf3. Development 129, 4015 – 4025.en_US
dc.identifier.citedreferenceHovanes, K., Li, T.W., Munguia, J.E., Truong, T., Milovanovic, T., Lawrence Marsh, J., Holcombe, R.F. & Waterman, M.L. 2001. Beta‐catenin‐sensitive isoforms of lymphoid enhancer factor‐1 are selectively expressed in colon cancer. Nat Genet 28, 53 – 57.en_US
dc.identifier.citedreferenceHu, M.C. & Rosenblum, N.D. 2005. Smad1, beta‐catenin and Tcf4 associate in a molecular complex with the Myc promoter in dysplastic renal tissue and cooperate to control Myc transcription. Development 132, 215 – 225.en_US
dc.identifier.citedreferenceHuber, O., Korn, R., McLaughlin, J., Ohsugi, M., Herrmann, B.G. & Kemler, R. 1996. Nuclear localization of beta‐catenin by interaction with transcription factor LEF‐1. Mech Dev 59, 3 – 10.en_US
dc.identifier.citedreferenceHuelsken, J., Vogel, R., Brinkmann, V., Erdmann, B., Birchmeier, C. & Birchmeier, W. 2000. Requirement for beta‐catenin in anterior‐posterior axis formation in mice. J Cell Biol 148, 567 – 578.en_US
dc.identifier.citedreferenceHurlstone, A.F., Haramis, A.P., Wienholds, E., Begthel, H., Korving, J., Van Eeden, F., Cuppen, E., Zivkovic, D., Plasterk, R.H. & Clevers, H. 2003. The Wnt/beta‐catenin pathway regulates cardiac valve formation. Nature 425, 633 – 637.en_US
dc.identifier.citedreferenceHussein, S.M., Duff, E.K. & Sirard, C. 2003. Smad4 and beta‐catenin co‐activators functionally interact with lymphoid‐enhancing factor to regulate graded expression of Msx2. J Biol Chem 278, 48805 – 48814.en_US
dc.identifier.citedreferenceHwang, I., Seo, E.Y. & Ha, H. 2009. Wnt/beta‐catenin signaling: a novel target for therapeutic intervention of fibrotic kidney disease. Arch Pharm Res 32, 1653 – 1662.en_US
dc.identifier.citedreferenceIglesias, M., Gomez‐Skarmeta, J.L., Salo, E. & Adell, T. 2008. Silencing of Smed‐betacatenin1 generates radial‐like hypercephalized planarians. Development 135, 1215 – 1221.en_US
dc.identifier.citedreferenceIkeya, M. & Takada, S. 2001. Wnt‐3a is required for somite specification along the anteroposterior axis of the mouse embryo and for regulation of cdx‐1 expression. Mech Dev 103, 27 – 33.en_US
dc.identifier.citedreferenceInestrosa, N.C. & Toledo, E.M. 2008. The role of Wnt signaling in neuronal dysfunction in Alzheimer’s disease. Mol Neurodegener 3, 9.en_US
dc.identifier.citedreferenceIshibashi, H., Matsumura, N., Hanafusa, H., Matsumoto, K., De Robertis, E.M. & Kuroda, H. 2008. Expression of Siamois and Twin in the blastula Chordin/Noggin signaling center is required for brain formation in Xenopus laevis embryos. Mech Dev 125, 58 – 66.en_US
dc.identifier.citedreferenceItasaki, N. & Hoppler, S. 2010. Crosstalk between Wnt and bone morphogenic protein signaling: a turbulent relationship. Dev Dyn 239, 16 – 33.en_US
dc.identifier.citedreferenceJackson, A., Vayssiere, B., Garcia, T., Newell, W., Baron, R., Roman‐Roman, S. & Rawadi, G. 2005. Gene array analysis of Wnt‐regulated genes in C3H10T1/2 cells. Bone 36, 585 – 598.en_US
dc.identifier.citedreferenceJamora, C., DasGupta, R., Kocieniewski, P. & Fuchs, E. 2003. Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 422, 317 – 322.en_US
dc.identifier.citedreferenceJeong, Y., El‐Jaick, K., Roessler, E., Muenke, M. & Epstein, D.J. 2006. A functional screen for sonic hedgehog regulatory elements across a 1 Mb interval identifies long‐range ventral forebrain enhancers. Development 133, 761 – 772.en_US
dc.identifier.citedreferenceJho, E.H., Zhang, T., Domon, C., Joo, C.K., Freund, J.N. & Costantini, F. 2002. Wnt/beta‐catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22, 1172 – 1183.en_US
dc.identifier.citedreferenceJin, T. 2008. The WNT signalling pathway and diabetes mellitus. Diabetologia 51, 1771 – 1780.en_US
dc.identifier.citedreferenceJung, H.C. & Kim, K. 2005. Identification of MYCBP as a beta‐catenin/LEF‐1 target using DNA microarray analysis. Life Sci 77, 1249 – 1262.en_US
dc.identifier.citedreferenceKaidi, A., Williams, A.C. & Paraskeva, C. 2007. Interaction between beta‐catenin and HIF‐1 promotes cellular adaptation to hypoxia. Nat Cell Biol 9, 210 – 217.en_US
dc.identifier.citedreferenceKalay, G. & Wittkopp, P.J. 2010. Nomadic enhancers: tissue‐specific cis‐regulatory elements of yellow have divergent genomic positions among Drosophila species. PLoS Genet 6, e1001222.en_US
dc.identifier.citedreferenceKang, Y., Chen, C.R. & Massague, J. 2003. A self‐enabling TGFbeta response coupled to stress signaling: smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol Cell 11, 915 – 926.en_US
dc.identifier.citedreferenceKelly, O.G., Pinson, K.I. & Skarnes, W.C. 2004. The Wnt co‐receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development 131, 2803 – 2815.en_US
dc.identifier.citedreferenceKennell, J. & Cadigan, K.M. 2009. APC and beta‐catenin degradation. Adv Exp Med Biol 656, 1 – 12.en_US
dc.identifier.citedreferenceKim, C.H., Oda, T., Itoh, M., Jiang, D., Artinger, K.B., Chandrasekharappa, S.C., Driever, W. & Chitnis, A.B. 2000. Repressor activity of Headless/Tcf3 is essential for vertebrate head formation. Nature 407, 913 – 916.en_US
dc.identifier.citedreferenceKim, J.H., Kim, B., Cai, L., Choi, H.J., Ohgi, K.A., Tran, C., Chen, C., Chung, C.H., Huber, O., Rose, D.W., Sawyers, C.L., Rosenfeld, M.G. & Baek, S.H. 2005. Transcriptional regulation of a metastasis suppressor gene by Tip60 and beta‐catenin complexes. Nature 434, 921 – 926.en_US
dc.identifier.citedreferenceKim, C.H., Neiswender, H., Baik, E.J., Xiong, W.C. & Mei, L. 2008. Beta‐catenin interacts with MyoD and regulates its transcription activity. Mol Cell Biol 28, 2941 – 2951.en_US
dc.identifier.citedreferenceKing, N., Westbrook, M.J., Young, S.L., Kuo, A., Abedin, M., Chapman, J., Fairclough, S., Hellsten, U., Isogai, Y., Letunic, I. et al. 2008. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451, 783 – 788.en_US
dc.identifier.citedreferenceKioussi, C., Briata, P., Baek, S.H., Rose, D.W., Hamblet, N.S., Herman, T., Ohgi, K.A., Lin, C., Gleiberman, A., Wang, J. et al. 2002. Identification of a Wnt/Dvl/beta‐Catenin ‐‐> Pitx2 pathway mediating cell‐type‐specific proliferation during development. Cell 111, 673 – 685.en_US
dc.identifier.citedreferenceKlapholz‐Brown, Z., Walmsley, G.G., Nusse, Y.M., Nusse, R. & Brown, P.O. 2007. Transcriptional program induced by Wnt protein in human fibroblasts suggests mechanisms for cell cooperativity in defining tissue microenvironments. PLoS ONE 2, e945.en_US
dc.identifier.citedreferenceKlaus, A., Saga, Y., Taketo, M.M., Tzahor, E. & Birchmeier, W. 2007. Distinct roles of Wnt/beta‐catenin and Bmp signaling during early cardiogenesis. Proc Natl Acad Sci USA 104, 18531 – 18536.en_US
dc.identifier.citedreferenceKnirr, S. & Frasch, M. 2001. Molecular integration of inductive and mesoderm‐intrinsic inputs governs even‐skipped enhancer activity in a subset of pericardial and dorsal muscle progenitors. Dev Biol 238, 13 – 26.en_US
dc.identifier.citedreferenceKorinek, V., Barker, N., Morin, P.J., van Wichen, D., de Weger, R., Kinzler, K.W., Vogelstein, B. & Clevers, H. 1997. Constitutive transcriptional activation by a beta‐catenin‐Tcf complex in APC−/− colon carcinoma. Science 275, 1784 – 1787.en_US
dc.identifier.citedreferenceKorinek, V., Barker, N., Moerer, P., van Donselaar, E., Huls, G., Peters, P.J. & Clevers, H. 1998. Depletion of epithelial stem‐cell compartments in the small intestine of mice lacking Tcf‐4. Nat Genet 19, 379 – 383.en_US
dc.identifier.citedreferenceKratochwil, K., Galceran, J., Tontsch, S., Roth, W. & Grosschedl, R. 2002. FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(−/−) mice. Genes Dev 16, 3173 – 3185.en_US
dc.identifier.citedreferenceKrishnan, V., Bryant, H.U. & Macdougald, O.A. 2006. Regulation of bone mass by Wnt signaling. J Clin Invest 116, 1202 – 1209.en_US
dc.identifier.citedreferenceKusserow, A., Pang, K., Sturm, C., Hrouda, M., Lentfer, J., Schmidt, H.A., Technau, U., von Haeseler, A., Hobmayer, B., Martindale, M.Q. & Holstein, T.W. 2005. Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433, 156 – 160.en_US
dc.identifier.citedreferenceKwon, C., Arnold, J., Hsiao, E.C., Taketo, M.M., Conklin, B.R. & Srivastava, D. 2007. Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc Natl Acad Sci USA 104, 10894 – 10899.en_US
dc.identifier.citedreferenceKwon, C., Cordes, K.R. & Srivastava, D. 2008. Wnt/beta‐catenin signaling acts at multiple developmental stages to promote mammalian cardiogenesis. Cell Cycle 7, 3815 – 3818.en_US
dc.identifier.citedreferenceKwon, C., Qian, L., Cheng, P., Nigam, V., Arnold, J. & Srivastava, D. 2009. A regulatory pathway involving Notch1/beta‐catenin/Isl1 determines cardiac progenitor cell fate. Nat Cell Biol 11, 951 – 957.en_US
dc.identifier.citedreferenceLabbe, E., Letamendia, A. & Attisano, L. 2000. Association of Smads with lymphoid enhancer binding factor 1/T cell‐specific factor mediates cooperative signaling by the transforming growth factor‐beta and wnt pathways. Proc Natl Acad Sci USA 97, 8358 – 8363.en_US
dc.identifier.citedreferenceLam, N., Chesney, M.A. & Kimble, J. 2006. Wnt signaling and CEH‐22/tinman/Nkx2.5 specify a stem cell niche in C. elegans. Curr Biol 16, 287 – 295.en_US
dc.identifier.citedreferenceLancaster, M.A. & Gleeson, J.G. 2010. Cystic kidney disease: the role of Wnt signaling. Trends Mol Med 16, 349 – 360.en_US
dc.identifier.citedreferenceLapebie, P., Gazave, E., Ereskovsky, A., Derelle, R., Bezac, C., Renard, E., Houliston, E. & Borchiellini, C. 2009. WNT/beta‐catenin signalling and epithelial patterning in the homoscleromorph sponge Oscarella. PLoS ONE 4, e5823.en_US
dc.identifier.citedreferenceLaudet, V., Stehelin, D. & Clevers, H. 1993. Ancestry and diversity of the HMG box superfamily. Nucleic Acids Res 21, 2493 – 2501.en_US
dc.identifier.citedreferenceLaurent, M.N., Blitz, I.L., Hashimoto, C., Rothbacher, U. & Cho, K.W. 1997. The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann’s organizer. Development 124, 4905 – 4916.en_US
dc.identifier.citedreferenceLaurent‐Puig, P. & Zucman‐Rossi, J. 2006. Genetics of hepatocellular tumors. Oncogene 25, 3778 – 3786.en_US
dc.identifier.citedreferenceLavenu, A., Pournin, S., Babinet, C. & Morello, D. 1994. The cis‐acting elements known to regulate c‐myc expression ex vivo are not sufficient for correct transcription in vivo. Oncogene 9, 527 – 536.en_US
dc.identifier.citedreferenceLee, H.H. & Frasch, M. 2000. Wingless effects mesoderm patterning and ectoderm segmentation events via induction of its downstream target sloppy paired. Development 127, 5497 – 5508.en_US
dc.identifier.citedreferenceLee, W., Swarup, S., Chen, J., Ishitani, T. & Verheyen, E.M. 2009. Homeodomain‐interacting protein kinases (Hipks) promote Wnt/Wg signaling through stabilization of beta‐catenin/Arm and stimulation of target gene expression. Development 136, 241 – 251.en_US
dc.identifier.citedreferenceLei, S., Dubeykovskiy, A., Chakladar, A., Wojtukiewicz, L. & Wang, T.C. 2004. The murine gastrin promoter is synergistically activated by transforming growth factor‐beta/Smad and Wnt signaling pathways. J Biol Chem 279, 42492 – 42502.en_US
dc.identifier.citedreferenceLengfeld, T., Watanabe, H., Simakov, O., Lindgens, D., Gee, L., Law, L., Schmidt, H.A., Ozbek, S., Bode, H. & Holstein, T.W. 2009. Multiple Wnts are involved in Hydra organizer formation and regeneration. Dev Biol 330, 186 – 199.en_US
dc.identifier.citedreferenceLi, J., Sutter, C., Parker, D.S., Blauwkamp, T., Fang, M. & Cadigan, K.M. 2007. CBP/p300 are bimodal regulators of Wnt signaling. EMBO J 26, 2284 – 2294.en_US
dc.identifier.citedreferenceLi, B., Kuriyama, S., Moreno, M. & Mayor, R. 2009. The posteriorizing gene Gbx2 is a direct target of Wnt signalling and the earliest factor in neural crest induction. Development 136, 3267 – 3278.en_US
dc.identifier.citedreferenceLickert, H., Domon, C., Huls, G., Wehrle, C., Duluc, I., Clevers, H., Meyer, B.I., Freund, J.N. & Kemler, R. 2000. Wnt/(beta)‐catenin signaling regulates the expression of the homeobox gene Cdx1 in embryonic intestine. Development 127, 3805 – 3813.en_US
dc.identifier.citedreferenceLickert, H., Kutsch, S., Kanzler, B., Tamai, Y., Taketo, M.M. & Kemler, R. 2002. Formation of multiple hearts in mice following deletion of beta‐catenin in the embryonic endoderm. Dev Cell 3, 171 – 181.en_US
dc.identifier.citedreferenceLiebner, S., Cattelino, A., Gallini, R., Rudini, N., Iurlaro, M., Piccolo, S. & Dejana, E. 2004. Beta‐catenin is required for endothelial‐mesenchymal transformation during heart cushion development in the mouse. J Cell Biol 166, 359 – 367.en_US
dc.identifier.citedreferenceLin, H.V., Rogulja, A. & Cadigan, K.M. 2004. Wingless eliminates ommatidia from the edge of the developing eye through activation of apoptosis. Development 131, 2409 – 2418.en_US
dc.identifier.citedreferenceLin, L., Cui, L., Zhou, W., Dufort, D., Zhang, X., Cai, C.L., Bu, L., Yang, L., Martin, J., Kemler, R., Rosenfeld, M.G., Chen, J. & Evans, S.M. 2007. Beta‐catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc Natl Acad Sci USA 104, 9313 – 9318.en_US
dc.identifier.citedreferenceLin, G., Xu, N. & Xi, R. 2008. Paracrine Wingless signalling controls self‐renewal of Drosophila intestinal stem cells. Nature 455, 1119 – 1123.en_US
dc.identifier.citedreferenceLiu, Z. & Habener, J.F. 2008. Glucagon‐like peptide‐1 activation of TCF7L2‐dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem 283, 8723 – 8735.en_US
dc.identifier.citedreferenceLiu, P., Wakamiya, M., Shea, M.J., Albrecht, U., Behringer, R.R. & Bradley, A. 1999. Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22, 361 – 365.en_US
dc.identifier.citedreferenceLiu, F., van den Broek, O., Destree, O. & Hoppler, S. 2005. Distinct roles for Xenopus Tcf/Lef genes in mediating specific responses to Wnt/beta‐catenin signalling in mesoderm development. Development 132, 5375 – 5385.en_US
dc.identifier.citedreferenceLiu, Y., Asakura, M., Inoue, H., Nakamura, T., Sano, M., Niu, Z., Chen, M., Schwartz, R.J. & Schneider, M.D. 2007. Sox17 is essential for the specification of cardiac mesoderm in embryonic stem cells. Proc Natl Acad Sci USA 104, 3859 – 3864.en_US
dc.identifier.citedreferenceLo, M.C., Gay, F., Odom, R., Shi, Y. & Lin, R. 2004. Phosphorylation by the beta‐catenin/MAPK complex promotes 14‐3‐3‐mediated nuclear export of TCF/POP‐1 in signal‐responsive cells in C. elegans. Cell 117, 95 – 106.en_US
dc.identifier.citedreferenceLogan, C.Y. & Nusse, R. 2004. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20, 781 – 810.en_US
dc.identifier.citedreferenceLongo, K.A., Kennell, J.A., Ochocinska, M.J., Ross, S.E., Wright, W.S. & MacDougald, O.A. 2002. Wnt signaling protects 3T3‐L1 preadipocytes from apoptosis through induction of insulin‐like growth factors. J Biol Chem 277, 38239 – 38244.en_US
dc.identifier.citedreferenceLove, J.J., Li, X., Case, D.A., Giese, K., Grosschedl, R. & Wright, P.E. 1995. Structural basis for DNA bending by the architectural transcription factor LEF‐1. Nature 376, 791 – 795.en_US
dc.identifier.citedreferenceLove, J.J., Li, X., Chung, J., Dyson, H.J. & Wright, P.E. 2004. The LEF‐1 high‐mobility group domain undergoes a disorder‐to‐order transition upon formation of a complex with cognate DNA. Biochemistry 43, 8725 – 8734.en_US
dc.identifier.citedreferenceLucero, O.M., Dawson, D.W., Moon, R.T. & Chien, A.J. 2010. A re‐evaluation of the “oncogenic” nature of Wnt/beta‐catenin signaling in melanoma and other cancers. Curr Oncol Rep 12, 314 – 318.en_US
dc.identifier.citedreferenceLum, L., Yao, S., Mozer, B., Rovescalli, A., Von Kessler, D., Nirenberg, M. & Beachy, P.A. 2003. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039 – 2045.en_US
dc.identifier.citedreferenceMacDonald, B.T., Tamai, K. & He, X. 2009. Wnt/beta‐catenin signaling: components, mechanisms, and diseases. Dev Cell 17, 9 – 26.en_US
dc.identifier.citedreferenceMahmoudi, T., Li, V.S., Ng, S.S., Taouatas, N., Vries, R.G., Mohammed, S., Heck, A.J. & Clevers, H. 2009. The kinase TNIK is an essential activator of Wnt target genes. EMBO J 28, 3329 – 3340.en_US
dc.identifier.citedreferenceMaier, E., Hebenstreit, D., Posselt, G., Hammerl, P., Duschl, A. & Horejs‐Hoeck, J. 2011. Inhibition of suppressive T cell factor 1 (TCF‐1) isoforms in naive CD4+ T cells is mediated by IL‐4/STAT6 signaling. J Biol Chem 286, 919 – 928.en_US
dc.identifier.citedreferenceManolagas, S.C. & Almeida, M. 2007. Gone with the Wnts: beta‐catenin, T‐cell factor, forkhead box O, and oxidative stress in age‐dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol 21, 2605 – 2614.en_US
dc.identifier.citedreferenceMaretto, S., Cordenonsi, M., Dupont, S., Braghetta, P., Broccoli, V., Hassan, A.B., Volpin, D., Bressan, G.M. & Piccolo, S. 2003. Mapping Wnt/beta‐catenin signaling during mouse development and in colorectal tumors. Proc Natl Acad Sci USA 100, 3299 – 3304.en_US
dc.identifier.citedreferenceMartin, B.L. & Kimelman, D. 2008. Regulation of canonical Wnt signaling by Brachyury is essential for posterior mesoderm formation. Dev Cell 15, 121 – 133.en_US
dc.identifier.citedreferenceMartin, F.A., Perez‐Garijo, A. & Morata, G. 2009. Apoptosis in Drosophila: compensatory proliferation and undead cells. Int J Dev Biol 53, 1341 – 1347.en_US
dc.identifier.citedreferenceMarvin, M.J., Di Rocco, G., Gardiner, A., Bush, S.M. & Lassar, A.B. 2001. Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev 15, 316 – 327.en_US
dc.identifier.citedreferenceMasckauchan, T.N., Shawber, C.J., Funahashi, Y., Li, C.M. & Kitajewski, J. 2005. Wnt/beta‐catenin signaling induces proliferation, survival and interleukin‐8 in human endothelial cells. Angiogenesis 8, 43 – 51.en_US
dc.identifier.citedreferenceMazumdar, J., O’Brien, W.T., Johnson, R.S., LaManna, J.C., Chavez, J.C., Klein, P.S. & Simon, M.C. 2010. O 2 regulates stem cells through Wnt/beta‐catenin signalling. Nat Cell Biol 12, 1007 – 1013.en_US
dc.identifier.citedreferenceMcGrew, L.L., Hoppler, S. & Moon, R.T. 1997. Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech Dev 69, 105 – 114.en_US
dc.identifier.citedreferenceMcMahon, A.P. & Moon, R.T. 1989. Ectopic expression of the proto‐oncogene int‐1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58, 1075 – 1084.en_US
dc.identifier.citedreferenceMeinhardt, H. 2002. The radial‐symmetric hydra and the evolution of the bilateral body plan: an old body became a young brain. Bioessays 24, 185 – 191.en_US
dc.identifier.citedreferenceMerrill, B.J., Pasolli, H.A., Polak, L., Rendl, M., Garcia‐Garcia, M.J., Anderson, K.V. & Fuchs, E. 2004. Tcf3: a transcriptional regulator of axis induction in the early embryo. Development 131, 263 – 274.en_US
dc.identifier.citedreferenceMizumoto, K. & Sawa, H. 2007. Two betas or not two betas: regulation of asymmetric division by beta‐catenin. Trends Cell Biol 17, 465 – 473.en_US
dc.identifier.citedreferenceMolenaar, M. 1996. XTcf‐3 transcription factor mediates [beta]‐catenin‐induced axis formation in Xenopus embryos. Cell 86, 391 – 399.en_US
dc.identifier.citedreferenceMorris, J.Pt., Wang, S.C. & Hebrok, M. 2010. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer 10, 683 – 695.en_US
dc.identifier.citedreferenceMosimann, C., Hausmann, G. & Basler, K. 2009. Beta‐catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol 10, 276 – 286.en_US
dc.identifier.citedreferenceMoustakas, A. & Heldin, C.H. 2009. The regulation of TGFbeta signal transduction. Development 136, 3699 – 3714.en_US
dc.identifier.citedreferenceMukhopadhyay, M., Shtrom, S., Rodriguez‐Esteban, C., Chen, L., Tsukui, T., Gomer, L., Dorward, D.W., Glinka, A., Grinberg, A., Huang, S.P., Niehrs, C., Izpisua Belmonte, J.C. & Westphal, H. 2001. Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1, 423 – 434.en_US
dc.identifier.citedreferenceMulholland, D.J., Dedhar, S., Coetzee, G.A. & Nelson, C.C. 2005. Interaction of nuclear receptors with the Wnt/beta‐catenin/Tcf signaling axis: Wnt you like to know? Endocr Rev 26, 898 – 915.en_US
dc.identifier.citedreferenceMuller, W., Frank, U., Teo, R., Mokady, O., Guette, C. & Plickert, G. 2007. Wnt signaling in hydroid development: ectopic heads and giant buds induced by GSK‐3beta inhibitors. Int J Dev Biol 51, 211 – 220.en_US
dc.identifier.citedreferenceMuncan, V., Sansom, O.J., Tertoolen, L., Phesse, T.J., Begthel, H., Sancho, E., Cole, A.M., Gregorieff, A., de Alboran, I.M., Clevers, H. & Clarke, A.R. 2006. Rapid loss of intestinal crypts upon conditional deletion of the Wnt/Tcf‐4 target gene c‐Myc. Mol Cell Biol 26, 8418 – 8426.en_US
dc.identifier.citedreferenceNaishiro, Y., Yamada, T., Idogawa, M., Honda, K., Takada, M., Kondo, T., Imai, K. & Hirohashi, S. 2005. Morphological and transcriptional responses of untransformed intestinal epithelial cells to an oncogenic beta‐catenin protein. Oncogene 24, 3141 – 3153.en_US
dc.identifier.citedreferenceNajdi, R., Syed, A., Arce, L., Theisen, H., Ting, J.H., Atcha, F., Nguyen, A.V., Martinez, M., Holcombe, R.F., Edwards, R.A., Marsh, J.L. & Waterman, M.L. 2009. A Wnt kinase network alters nuclear localization of TCF‐1 in colon cancer. Oncogene 28, 4133 – 4146.en_US
dc.identifier.citedreferenceNakano, N., Itoh, S., Watanabe, Y., Maeyama, K., Itoh, F. & Kato, M. 2010. Requirement of TCF7L2 for TGF‐{beta}‐dependent transcriptional activation of the TMEPAI gene. J Biol Chem 285, 38023 – 38033.en_US
dc.identifier.citedreferenceNakaya, M.A., Biris, K., Tsukiyama, T., Jaime, S., Rawls, J.A. & Yamaguchi, T.P. 2005. Wnt3a links left‐right determination with segmentation and anteroposterior axis elongation. Development 132, 5425 – 5436.en_US
dc.identifier.citedreferenceNateri, A.S., Spencer‐Dene, B. & Behrens, A. 2005. Interaction of phosphorylated c‐Jun with TCF4 regulates intestinal cancer development. Nature 437, 281 – 285.en_US
dc.identifier.citedreferenceNeumann, C.J. & Cohen, S.M. 1997. Long‐range action of Wingless organizes the dorsal–ventral axis of the Drosophila wing. Development 124, 871 – 880.en_US
dc.identifier.citedreferenceNguyen, H., Merrill, B.J., Polak, L., Nikolova, M., Rendl, M., Shaver, T.M., Pasolli, H.A. & Fuchs, E. 2009. Tcf3 and Tcf4 are essential for long‐term homeostasis of skin epithelia. Nat Genet 41, 1068 – 1075.en_US
dc.identifier.citedreferenceNiehrs, C. 2006. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25, 7469 – 7481.en_US
dc.identifier.citedreferenceNiehrs, C. 2010. On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development 137, 845 – 857.en_US
dc.identifier.citedreferenceNishita, M., Hashimoto, M.K., Ogata, S., Laurent, M.N., Ueno, N., Shibuya, H. & Cho, K.W. 2000. Interaction between Wnt and TGF‐beta signalling pathways during formation of Spemann’s organizer. Nature 403, 781 – 785.en_US
dc.identifier.citedreferenceNoordermeer, J., Klingensmith, J., Perrimon, N. & Nusse, R. 1994. Dishevelled and armadillo act in the wingless signalling pathway in Drosophila. Nature 367, 80 – 83.en_US
dc.identifier.citedreferenceNusse, R., Fuerer, C., Ching, W., Harnish, K., Logan, C., Zeng, A., ten Berge, D. & Kalani, Y. 2008. Wnt signaling and stem cell control. Cold Spring Harb Symp Quant Biol 73, 59 – 66.en_US
dc.identifier.citedreferenceOgryzko, V.V., Schiltz, R.L., Russanova, V., Howard, B.H. & Nakatani, Y. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953 – 959.en_US
dc.identifier.citedreferenceOlson, L.E., Tollkuhn, J., Scafoglio, C., Krones, A., Zhang, J., Ohgi, K.A., Wu, W., Taketo, M.M., Kemler, R., Grosschedl, R., Rose, D., Li, X. & Rosenfeld, M.G. 2006. Homeodomain‐mediated beta‐catenin‐dependent switching events dictate cell‐lineage determination. Cell 125, 593 – 605.en_US
dc.identifier.citedreferenceOosterwegel, M., van de Wetering, M., Dooijes, D., Klomp, L., Winoto, A., Georgopoulos, K., Meijlink, F. & Clevers, H. 1991. Cloning of murine TCF‐1, a T cell‐specific transcription factor interacting with functional motifs in the CD3‐epsilon and T cell receptor alpha enhancers. J Exp Med 173, 1133 – 1142.en_US
dc.identifier.citedreferencePang, K., Ryan, J.F., Mullikin, J.C., Baxevanis, A.D. & Martindale, M.Q. 1999. Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi. EvoDevo 1, 10.en_US
dc.identifier.citedreferencePark, M., Wu, X., Golden, K., Axelrod, J.D. & Bodmer, R. 1996. The wingless signaling pathway is directly involved in Drosophila heart development. Dev Biol 177, 104 – 116.en_US
dc.identifier.citedreferencePeifer, M., Rauskolb, C., Williams, M., Riggleman, B. & Wieschaus, E. 1991. The segment polarity gene armadillo interacts with the wingless signaling pathway in both embryonic and adult pattern formation. Development 111, 1029 – 1043.en_US
dc.identifier.citedreferencePerez‐Garijo, A., Shlevkov, E. & Morata, G. 2009. The role of Dpp and Wg in compensatory proliferation and in the formation of hyperplastic overgrowths caused by apoptotic cells in the Drosophila wing disc. Development 136, 1169 – 1177.en_US
dc.identifier.citedreferencePetersen, C.P. & Reddien, P.W. 2008. Smed‐betacatenin‐1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319, 327 – 330.en_US
dc.identifier.citedreferencePetersen, C.P. & Reddien, P.W. 2009. Wnt signaling and the polarity of the primary body axis. Cell 139, 1056 – 1068.en_US
dc.identifier.citedreferencePhillips, B.T. & Kimble, J. 2009. A new look at TCF and beta‐catenin through the lens of a divergent C. elegans Wnt pathway. Dev Cell 17, 27 – 34.en_US
dc.identifier.citedreferencePiepenburg, O., Vorbruggen, G. & Jackle, H. 2000. Drosophila segment borders result from unilateral repression of hedgehog activity by wingless signaling. Mol Cell 6, 203 – 209.en_US
dc.identifier.citedreferencePilon, N., Oh, K., Sylvestre, J.R., Bouchard, N., Savory, J. & Lohnes, D. 2006. Cdx4 is a direct target of the canonical Wnt pathway. Dev Biol 289, 55 – 63.en_US
dc.identifier.citedreferencePinto, D. & Clevers, H. 2005. Wnt control of stem cells and differentiation in the intestinal epithelium. Exp Cell Res 306, 357 – 363.en_US
dc.identifier.citedreferencePlickert, G., Jacoby, V., Frank, U., Muller, W.A. & Mokady, O. 2006. Wnt signaling in hydroid development: formation of the primary body axis in embryogenesis and its subsequent patterning. Dev Biol 298, 368 – 378.en_US
dc.identifier.citedreferencePolakis, P. 2000. Wnt signaling and cancer. Genes Dev 14, 1837 – 1851.en_US
dc.identifier.citedreferencePolakis, P. 2007. The many ways of Wnt in cancer. Curr Opin Genet Dev 17, 45 – 51.en_US
dc.identifier.citedreferencePomerantz, M.M., Ahmadiyeh, N., Jia, L., Herman, P., Verzi, M.P., Doddapaneni, H., Beckwith, C.A., Chan, J.A., Hills, A., Davis, M. et al. 2009. The 8q24 cancer risk variant rs6983267 shows long‐range interaction with MYC in colorectal cancer. Nat Genet 41, 882 – 884.en_US
dc.identifier.citedreferencePorcher, A. & Dostatni, N. 2010. The bicoid morphogen system. Curr Biol 20, R249 – R254.en_US
dc.identifier.citedreferencePulkkinen, K., Murugan, S. & Vainio, S. 2008. Wnt signaling in kidney development and disease. Organogenesis 4, 55 – 59.en_US
dc.identifier.citedreferenceRailo, A., Pajunen, A., Itaranta, P., Naillat, F., Vuoristo, J., Kilpelainen, P. & Vainio, S. 2009. Genomic response to Wnt signalling is highly context‐dependent – evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets. Exp Cell Res 315, 2690 – 2704.en_US
dc.identifier.citedreferenceReya, T., O’Riordan, M., Okamura, R., Devaney, E., Willert, K., Nusse, R. & Grosschedl, R. 2000. Wnt signaling regulates B lymphocyte proliferation through a LEF‐1 dependent mechanism. Immunity 13, 15 – 24.en_US
dc.identifier.citedreferenceRiechmann, V. & Ephrussi, A. 2001. Axis formation during Drosophila oogenesis. Curr Opin Genet Dev 11, 374 – 383.en_US
dc.identifier.citedreferenceRiggleman, B., Wieschaus, E. & Schedl, P. 1989. Molecular analysis of the armadillo locus: uniformly distributed transcripts and a protein with novel internal repeats are associated with a Drosophila segment polarity gene. Genes Dev 3, 96 – 113.en_US
dc.identifier.citedreferenceRivat, C., Le Floch, N., Sabbah, M., Teyrol, I., Redeuilh, G., Bruyneel, E., Mareel, M., Matrisian, L.M., Crawford, H.C., Gespach, C. & Attoub, S. 2003. Synergistic cooperation between the AP‐1 and LEF‐1 transcription factors in activation of the matrilysin promoter by the src oncogene: implications in cellular invasion. FASEB J 17, 1721 – 1723.en_US
dc.identifier.citedreferenceRocheleau, C.E., Downs, W.D., Lin, R., Wittmann, C., Bei, Y., Cha, Y.H., Ali, M., Priess, J.R. & Mello, C.C. 1997. Wnt signaling and an APC‐related gene specify endoderm in early C. elegans embryos. Cell 90, 707 – 716.en_US
dc.identifier.citedreferenceRocheleau, C.E., Yasuda, J., Shin, T.H., Lin, R., Sawa, H., Okano, H., Priess, J.R., Davis, R.J. & Mello, C.C. 1999. WRM‐1 activates the LIT‐1 protein kinase to transduce anterior/posterior polarity signals in C. elegans. Cell 97, 717 – 726.en_US
dc.identifier.citedreferenceRodriguez‐Carballo, E., Ulsamer, A., Susperregui, A.R., Manzanares‐Cespedes, C., Sanchez‐Garcia, E., Bartrons, R., Rosa, J.L. & Ventura, F. 2011. Conserved regulatory motifs in osteogenic gene promoters integrate cooperative effects of canonical Wnt and BMP pathways. J Bone Miner Res 26, 718 – 729.en_US
dc.identifier.citedreferenceRoose, J., Molenaar, M., Peterson, J., Hurenkamp, J., Brantjes, H., Moerer, P., van de Wetering, M., Destree, O. & Clevers, H. 1998. The Xenopus Wnt effector XTcf‐3 interacts with Groucho‐related transcriptional repressors. Nature 395, 608 – 612.en_US
dc.identifier.citedreferenceRoose, J., Huls, G., van Beest, M., Moerer, P., van der Horn, K., Goldschmeding, R., Logtenberg, T. & Clevers, H. 1999. Synergy between tumor suppressor APC and the beta‐catenin‐Tcf4 target Tcf1. Science 285, 1923 – 1926.en_US
dc.identifier.citedreferenceRoth, W., Sustmann, C., Kieslinger, M., Gilmozzi, A., Irmer, D., Kremmer, E., Turck, C. & Grosschedl, R. 2004. PIASy‐deficient mice display modest defects in IFN and Wnt signaling. J Immunol 173, 6189 – 6199.en_US
dc.identifier.citedreferenceRulifson, I.C., Karnik, S.K., Heiser, P.W., ten Berge, D., Chen, H., Gu, X., Taketo, M.M., Nusse, R., Hebrok, M. & Kim, S.K. 2007. Wnt signaling regulates pancreatic beta cell proliferation. Proc Natl Acad Sci USA 104, 6247 – 6252.en_US
dc.identifier.citedreferenceSachdev, S., Bruhn, L., Sieber, H., Pichler, A., Melchior, F. & Grosschedl, R. 2001. PIASy, a nuclear matrix‐associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15, 3088 – 3103.en_US
dc.identifier.citedreferenceSancho, R., Nateri, A.S., de Vinuesa, A.G., Aguilera, C., Nye, E., Spencer‐Dene, B. & Behrens, A. 2009. JNK signalling modulates intestinal homeostasis and tumourigenesis in mice. EMBO J 28, 1843 – 1854.en_US
dc.identifier.citedreferenceSansom, O.J., Reed, K.R., Hayes, A.J., Ireland, H., Brinkmann, H., Newton, I.P., Batlle, E., Simon‐Assmann, P., Clevers, H., Nathke, I.S., Clarke, A.R. & Winton, D.J. 2004. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 18, 1385 – 1390.en_US
dc.identifier.citedreferenceSansom, O.J., Meniel, V.S., Muncan, V., Phesse, T.J., Wilkins, J.A., Reed, K.R., Vass, J.K., Athineos, D., Clevers, H. & Clarke, A.R. 2007. Myc deletion rescues Apc deficiency in the small intestine. Nature 446, 676 – 679.en_US
dc.identifier.citedreferenceSanson, B. 2001. Generating patterns from fields of cells. Examples from Drosophila segmentation. EMBO Rep 2, 1083 – 1088.en_US
dc.identifier.citedreferenceSaraswati, S., Alfaro, M.P., Thorne, C.A., Atkinson, J., Lee, E. & Young, P.P. 2010. Pyrvinium, a potent small molecule Wnt inhibitor, promotes wound repair and post‐MI cardiac remodeling. PLoS ONE 5, e15521.en_US
dc.identifier.citedreferenceSatow, R., Shitashige, M., Jigami, T., Honda, K., Ono, M., Hirohashi, S. & Yamada, T. 2010. Traf2‐ and Nck‐interacting kinase is essential for canonical Wnt signaling in Xenopus axis formation. J Biol Chem 285, 26289 – 26294.en_US
dc.identifier.citedreferenceSauka‐Spengler, T. & Bronner‐Fraser, M. 2006. Development and evolution of the migratory neural crest: a gene regulatory perspective. Curr Opin Genet Dev 16, 360 – 366.en_US
dc.identifier.citedreferenceSchinner, S., Ulgen, F., Papewalis, C., Schott, M., Woelk, A., Vidal‐Puig, A. & Scherbaum, W.A. 2008. Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adipocyte‐derived Wnt signalling molecules. Diabetologia 51, 147 – 154.en_US
dc.identifier.citedreferenceSchinner, S., Willenberg, H.S., Schott, M. & Scherbaum, W.A. 2009. Pathophysiological aspects of Wnt‐signaling in endocrine disease. Eur J Endocrinol 160, 731 – 737.en_US
dc.identifier.citedreferenceSchneider, V.A. & Mercola, M. 2001. Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 15, 304 – 315.en_US
dc.identifier.citedreferenceSchweizer, L., Nellen, D. & Basler, K. 2003. Requirement for Pangolin/dTCF in Drosophila Wingless signaling. Proc Natl Acad Sci USA 100, 5846 – 5851.en_US
dc.identifier.citedreferenceShafer, S.L. & Towler, D.A. 2009. Transcriptional regulation of SM22alpha by Wnt3a: convergence with TGFbeta(1)/Smad signaling at a novel regulatory element. J Mol Cell Cardiol 46, 621 – 635.en_US
dc.identifier.citedreferenceShaulian, E. & Karin, M. 2002. AP‐1 as a regulator of cell life and death. Nat Cell Biol 4, E131 – E136.en_US
dc.identifier.citedreferenceShetty, P., Lo, M.C., Robertson, S.M. & Lin, R. 2005. C. elegans TCF protein, POP‐1, converts from repressor to activator as a result of Wnt‐induced lowering of nuclear levels. Dev Biol 285, 584 – 592.en_US
dc.identifier.citedreferenceShiina, H., Igawa, M., Breault, J., Ribeiro‐Filho, L., Pookot, D., Urakami, S., Terashima, M., Deguchi, M., Yamanaka, M., Shirai, M., Kaneuchi, M., Kane, C.J. & Dahiya, R. 2003. The human T‐cell factor‐4 gene splicing isoforms, Wnt signal pathway, and apoptosis in renal cell carcinoma. Clin Cancer Res 9, 2121 – 2132.en_US
dc.identifier.citedreferenceShimizu, T., Bae, Y.K., Muraoka, O. & Hibi, M. 2005. Interaction of Wnt and caudal‐related genes in zebrafish posterior body formation. Dev Biol 279, 125 – 141.en_US
dc.identifier.citedreferenceShitashige, M., Satow, R., Honda, K., Ono, M., Hirohashi, S. & Yamada, T. 2008. Regulation of Wnt signaling by the nuclear pore complex. Gastroenterology 134, 1961 – 1971.en_US
dc.identifier.citedreferenceShitashige, M., Satow, R., Jigami, T., Aoki, K., Honda, K., Shibata, T., Ono, M., Hirohashi, S. & Yamada, T. 2010. Traf2‐ and Nck‐interacting kinase is essential for Wnt signaling and colorectal cancer growth. Cancer Res 70, 5024 – 5033.en_US
dc.identifier.citedreferenceShu, L., Sauter, N.S., Schulthess, F.T., Matveyenko, A.V., Oberholzer, J. & Maedler, K. 2008. Transcription factor 7‐like 2 regulates beta‐cell survival and function in human pancreatic islets. Diabetes 57, 645 – 653.en_US
dc.identifier.citedreferenceSiegfried, E., Wilder, E.L. & Perrimon, N. 1994. Components of wingless signalling in Drosophila. Nature 367, 76 – 80.en_US
dc.identifier.citedreferenceSierra, J., Yoshida, T., Joazeiro, C.A. & Jones, K.A. 2006. The APC tumor suppressor counteracts beta‐catenin activation and H3K4 methylation at Wnt target genes. Genes Dev 20, 586 – 600.en_US
dc.identifier.citedreferenceSinenko, S.A., Mandal, L., Martinez‐Agosto, J.A. & Banerjee, U. 2009. Dual role of wingless signaling in stem‐like hematopoietic precursor maintenance in Drosophila. Dev Cell 16, 756 – 763.en_US
dc.identifier.citedreferenceSinner, D., Rankin, S., Lee, M. & Zorn, A.M. 2004. Sox17 and beta‐catenin cooperate to regulate the transcription of endodermal genes. Development 131, 3069 – 3080.en_US
dc.identifier.citedreferenceSinner, D., Kordich, J.J., Spence, J.R., Opoka, R., Rankin, S., Lin, S.C., Jonatan, D., Zorn, A.M. & Wells, J.M. 2007. Sox17 and Sox4 differentially regulate beta‐catenin/T‐cell factor activity and proliferation of colon carcinoma cells. Mol Cell Biol 27, 7802 – 7815.en_US
dc.identifier.citedreferenceSmith, W.C. & Harland, R.M. 1991. Injected Xwnt‐8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 67, 753 – 765.en_US
dc.identifier.citedreferenceSmith‐Bolton, R.K., Worley, M.I., Kanda, H. & Hariharan, I.K. 2009. Regenerative growth in Drosophila imaginal discs is regulated by Wingless and Myc. Dev Cell 16, 797 – 809.en_US
dc.identifier.citedreferenceSnippert, H.J., Haegebarth, A., Kasper, M., Jaks, V., van Es, J.H., Barker, N., van de Wetering, M., van den Born, M., Begthel, H., Vries, R.G., Stange, D.E., Toftgard, R. & Clevers, H. 2010. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327, 1385 – 1389.en_US
dc.identifier.citedreferenceSokol, S., Christian, J.L., Moon, R.T. & Melton, D.A. 1991. Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell 67, 741 – 752.en_US
dc.identifier.citedreferenceSosinsky, A., Bonin, C.P., Mann, R.S. & Honig, B. 2003. Target Explorer: an automated tool for the identification of new target genes for a specified set of transcription factors. Nucleic Acids Res 31, 3589 – 3592.en_US
dc.identifier.citedreferenceSotelo, J., Esposito, D., Duhagon, M.A., Banfield, K., Mehalko, J., Liao, H., Stephens, R.M., Harris, T.J., Munroe, D.J. & Wu, X. 2010. Long‐range enhancers on 8q24 regulate c‐Myc. Proc Natl Acad Sci USA 107, 3001 – 3005.en_US
dc.identifier.citedreferenceSoucek, L. & Evan, G.I. 2010. The ups and downs of Myc biology. Curr Opin Genet Dev 20, 91 – 95.en_US
dc.identifier.citedreferenceStandley, H.J., Destree, O., Kofron, M., Wylie, C. & Heasman, J. 2006. Maternal XTcf1 and XTcf4 have distinct roles in regulating Wnt target genes. Dev Biol 289, 318 – 328.en_US
dc.identifier.citedreferenceStepniak, E., Radice, G.L. & Vasioukhin, V. 2009. Adhesive and signaling functions of cadherins and catenins in vertebrate development. Cold Spring Harb Perspect Biol 1, a002949.en_US
dc.identifier.citedreferenceStern, C.D. 2005. Neural induction: old problem, new findings, yet more questions. Development 132, 2007 – 2021.en_US
dc.identifier.citedreferenceStoick‐Cooper, C.L., Weidinger, G., Riehle, K.J., Hubbert, C., Major, M.B., Fausto, N. & Moon, R.T. 2007. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134, 479 – 489.en_US
dc.identifier.citedreferenceSuda, Y., Kokura, K., Kimura, J., Kajikawa, E., Inoue, F. & Aizawa, S. 2010. The same enhancer regulates the earliest Emx2 expression in caudal forebrain primordium, subsequent expression in dorsal telencephalon and later expression in the cortical ventricular zone. Development 137, 2939 – 2949.en_US
dc.identifier.citedreferenceSun, J. & Weis, W.I. 2011. Biochemical and structural characterization of beta‐catenin interactions with nonphosphorylated and CK2‐phosphorylated Lef‐1. J Mol Biol 405, 519 – 530.en_US
dc.identifier.citedreferenceTakashima, S., Mkrtchyan, M., Younossi‐Hartenstein, A., Merriam, J.R. & Hartenstein, V. 2008. The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature 454, 651 – 655.en_US
dc.identifier.citedreferenceTang, W., Dodge, M., Gundapaneni, D., Michnoff, C., Roth, M. & Lum, L. 2008. A genome‐wide RNAi screen for Wnt/beta‐catenin pathway components identifies unexpected roles for TCF transcription factors in cancer. Proc Natl Acad Sci USA 105, 9697 – 9702.en_US
dc.identifier.citedreferenceTao, Q., Yokota, C., Puck, H., Kofron, M., Birsoy, B., Yan, D., Asashima, M., Wylie, C.C., Lin, X. & Heasman, J. 2005. Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120, 857 – 871.en_US
dc.identifier.citedreferenceTheil, T., Aydin, S., Koch, S., Grotewold, L. & Ruther, U. 2002. Wnt and Bmp signalling cooperatively regulate graded Emx2 expression in the dorsal telencephalon. Development 129, 3045 – 3054.en_US
dc.identifier.citedreferenceTheisen, H., Syed, A., Nguyen, B.T., Lukacsovich, T., Purcell, J., Srivastava, G.P., Iron, D., Gaudenz, K., Nie, Q., Wan, F.Y., Waterman, M.L. & Marsh, J.L. 2007. Wingless directly represses DPP morphogen expression via an armadillo/TCF/Brinker complex. PLoS ONE 2, e142.en_US
dc.identifier.citedreferenceThorpe, C.J., Schlesinger, A., Carter, J.C. & Bowerman, B. 1997. Wnt signaling polarizes an early C. elegans blastomere to distinguish endoderm from mesoderm. Cell 90, 695 – 705.en_US
dc.identifier.citedreferenceTian, Y., Yuan, L., Goss, A.M., Wang, T., Yang, J., Lepore, J.J., Zhou, D., Schwartz, R.J., Patel, V., Cohen, E.D. & Morrisey, E.E. 2010. Characterization and in vivo pharmacological rescue of a Wnt2‐Gata6 pathway required for cardiac inflow tract development. Dev Cell 18, 275 – 287.en_US
dc.identifier.citedreferenceTomlinson, I., Webb, E., Carvajal‐Carmona, L., Broderick, P., Kemp, Z., Spain, S., Penegar, S., Chandler, I., Gorman, M., Wood, W. et al. 2007. A genome‐wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 39, 984 – 988.en_US
dc.identifier.citedreferenceToualbi, K., Guller, M.C., Mauriz, J.L., Labalette, C., Buendia, M.A., Mauviel, A. & Bernuau, D. 2007. Physical and functional cooperation between AP‐1 and beta‐catenin for the regulation of TCF‐dependent genes. Oncogene 26, 3492 – 3502.en_US
dc.identifier.citedreferenceTravis, A., Amsterdam, A., Belanger, C. & Grosschedl, R. 1991. LEF‐1, a gene encoding a lymphoid‐specific protein with an HMG domain, regulates T‐cell receptor alpha enhancer function [corrected]. Genes Dev 5, 880 – 894.en_US
dc.identifier.citedreferenceTuupanen, S., Turunen, M., Lehtonen, R., Hallikas, O., Vanharanta, S., Kivioja, T., Bjorklund, M., Wei, G., Yan, J., Niittymaki, I. et al. 2009. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet 41, 885 – 890.en_US
dc.identifier.citedreferenceTycko, B., Li, C.M. & Buttyan, R. 2007. The Wnt/beta‐catenin pathway in Wilms tumors and prostate cancers. Curr Mol Med 7, 479 – 489.en_US
dc.identifier.citedreferenceUeno, S., Weidinger, G., Osugi, T., Kohn, A.D., Golob, J.L., Pabon, L., Reinecke, H., Moon, R.T. & Murry, C.E. 2007. Biphasic role for Wnt/beta‐catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci USA 104, 9685 – 9690.en_US
dc.identifier.citedreferenceVadlamudi, U., Espinoza, H.M., Ganga, M., Martin, D.M., Liu, X., Engelhardt, J.F. & Amendt, B.A. 2005. PITX2, beta‐catenin and LEF‐1 interact to synergistically regulate the LEF‐1 promoter. J Cell Sci 118, 1129 – 1137.en_US
dc.identifier.citedreferenceVallin, J., Thuret, R., Giacomello, E., Faraldo, M.M., Thiery, J.P. & Broders, F. 2001. Cloning and characterization of three Xenopus slug promoters reveal direct regulation by Lef/beta‐catenin signaling. J Biol Chem 276, 30350 – 30358.en_US
dc.identifier.citedreferenceVan der Flier, L.G., Sabates‐Bellver, J., Oving, I., Haegebarth, A., De Palo, M., Anti, M., Van Gijn, M.E., Suijkerbuijk, S., Van de Wetering, M., Marra, G. & Clevers, H. 2007. The intestinal Wnt/TCF signature. Gastroenterology 132, 628 – 632.en_US
dc.identifier.citedreferenceVerzi, M.P., Hatzis, P., Sulahian, R., Philips, J., Schuijers, J., Shin, H., Freed, E., Lynch, J.P., Dang, D.T., Brown, M., Clevers, H., Liu, X.S. & Shivdasani, R.A. 2010. TCF4 and CDX2, major transcription factors for intestinal function, converge on the same cis‐regulatory regions. Proc Natl Acad Sci USA 107, 15157 – 15162.en_US
dc.identifier.citedreferenceVisel, A., Blow, M.J., Li, Z., Zhang, T., Akiyama, J.A., Holt, A., Plajzer‐Frick, I., Shoukry, M., Wright, C., Chen, F., Afzal, V., Ren, B., Rubin, E.M. & Pennacchio, L.A. 2009. ChIP‐seq accurately predicts tissue‐specific activity of enhancers. Nature 457, 854 – 858.en_US
dc.identifier.citedreferenceVlad, A., Rohrs, S., Klein‐Hitpass, L. & Muller, O. 2008. The first five years of the Wnt targetome. Cell Signal 20, 795 – 802.en_US
dc.identifier.citedreferenceVonica, A. & Gumbiner, B.M. 2007. The Xenopus Nieuwkoop center and Spemann‐Mangold organizer share molecular components and a requirement for maternal Wnt activity. Dev Biol 312, 90 – 102.en_US
dc.identifier.citedreferenceWaltzer, L. & Bienz, M. 1998. Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature 395, 521 – 525.en_US
dc.identifier.citedreferenceWang, S. & Jones, K.A. 2006. CK2 controls the recruitment of Wnt regulators to target genes in vivo. Curr Biol 16, 2239 – 2244.en_US
dc.identifier.citedreferenceWaterman, M.L. & Jones, K.A. 1990. Purification of TCF‐1 alpha, a T‐cell‐specific transcription factor that activates the T‐cell receptor C alpha gene enhancer in a context‐dependent manner. New Biol 2, 621 – 636.en_US
dc.identifier.citedreferenceWaterman, M.L., Fischer, W.H. & Jones, K.A. 1991. A thymus‐specific member of the HMG protein family regulates the human T cell receptor C alpha enhancer. Genes Dev 5, 656 – 669.en_US
dc.identifier.citedreferenceWeise, A., Bruser, K., Elfert, S., Wallmen, B., Wittel, Y., Wohrle, S. & Hecht, A. 2010. Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter‐binding and transcriptional activation properties at Wnt/beta‐catenin targets. Nucleic Acids Res 38, 1964 – 1981.en_US
dc.identifier.citedreferenceWend, P., Holland, J.D., Ziebold, U. & Birchmeier, W. 2010. Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol 21, 855 – 863.en_US
dc.identifier.citedreferencevan de Wetering, M., Oosterwegel, M., Dooijes, D. & Clevers, H. 1991. Identification and cloning of TCF‐1, a T lymphocyte‐specific transcription factor containing a sequence‐specific HMG box. EMBO J 10, 123 – 132.en_US
dc.identifier.citedreferencevan de Wetering, M., Cavallo, R., Dooijes, D., van Beest, M., van Es, J., Loureiro, J., Ypma, A., Hursh, D., Jones, T., Bejsovec, A., Peifer, M., Mortin, M. & Clevers, H. 1997. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789 – 799.en_US
dc.identifier.citedreferencevan de Wetering, M., Sancho, E., Verweij, C., de Lau, W., Oving, I., Hurlstone, A., van der Horn, K., Batlle, E., Coudreuse, D., Haramis, A.P. et al. 2002. The beta‐catenin/TCF‐4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241 – 250.en_US
dc.identifier.citedreferenceWhite, J.A. & Heasman, J. 2008. Maternal control of pattern formation in Xenopus laevis. J Exp Zool B Mol Dev Evol 310, 73 – 84.en_US
dc.identifier.citedreferenceWillert, K. & Jones, K.A. 2006. Wnt signaling: is the party in the nucleus? Genes Dev 20, 1394 – 1404.en_US
dc.identifier.citedreferenceWills, A.A., Kidd, A.R. III, Lepilina, A. & Poss, K.D. 2008. Fgfs control homeostatic regeneration in adult zebrafish fins. Development 135, 3063 – 3070.en_US
dc.identifier.citedreferenceWindsor, P.J. & Leys, S.P. 2010. Wnt signaling and induction in the sponge aquiferous system: evidence for an ancient origin of the organizer. Evol Dev 12, 484 – 493.en_US
dc.identifier.citedreferenceWohrle, S., Wallmen, B. & Hecht, A. 2007. Differential control of Wnt target genes involves epigenetic mechanisms and selective promoter occupancy by T‐cell factors. Mol Cell Biol 27, 8164 – 8177.en_US
dc.identifier.citedreferenceWright, J.B., Brown, S.J. & Cole, M.D. 2010. Upregulation of c‐MYC in cis through a large chromatin loop linked to a cancer risk‐associated single‐nucleotide polymorphism in colorectal cancer cells. Mol Cell Biol 30, 1411 – 1420.en_US
dc.identifier.citedreferenceWu, X., Golden, K. & Bodmer, R. 1995. Heart development in Drosophila requires the segment polarity gene wingless. Dev Biol 169, 619 – 628.en_US
dc.identifier.citedreferenceYamada, M., Ohnishi, J., Ohkawara, B., Iemura, S., Satoh, K., Hyodo‐Miura, J., Kawachi, K., Natsume, T. & Shibuya, H. 2006. NARF, an nemo‐like kinase (NLK)‐associated ring finger protein regulates the ubiquitylation and degradation of T cell factor/lymphoid enhancer factor (TCF/LEF). J Biol Chem 281, 20749 – 20760.en_US
dc.identifier.citedreferenceYamaguchi, T.P., Takada, S., Yoshikawa, Y., Wu, N. & McMahon, A.P. 1999. T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev 13, 3185 – 3190.en_US
dc.identifier.citedreferenceYamamoto, S., Hikasa, H., Ono, H. & Taira, M. 2003a. Molecular link in the sequential induction of the Spemann organizer: direct activation of the cerberus gene by Xlim‐1, Xotx2, Mix.1, and Siamois immediately downstream from Nodal and Wnt signaling. Dev Biol 257, 190 – 204.en_US
dc.identifier.citedreferenceYamamoto, H., Ihara, M., Matsuura, Y. & Kikuchi, A. 2003b. Sumoylation is involved in beta‐catenin‐dependent activation of Tcf‐4. EMBO J 22, 2047 – 2059.en_US
dc.identifier.citedreferenceYang, X., van Beest, M., Clevers, H., Jones, T., Hursh, D.A. & Mortin, M.A. 2000. Decapentaplegic is a direct target of dTcf repression in the Drosophila visceral mesoderm. Development 127, 3695 – 3702.en_US
dc.identifier.citedreferenceYasumoto, K., Takeda, K., Saito, H., Watanabe, K., Takahashi, K. & Shibahara, S. 2002. Microphthalmia‐associated transcription factor interacts with LEF‐1, a mediator of Wnt signaling. EMBO J 21, 2703 – 2714.en_US
dc.identifier.citedreferenceYochum, G.S., Cleland, R. & Goodman, R.H. 2008. A genome‐wide screen for beta‐catenin binding sites identifies a downstream enhancer element that controls c‐Myc gene expression. Mol Cell Biol 28, 7368 – 7379.en_US
dc.identifier.citedreferenceYochum, G.S., Sherrick, C.M., Macpartlin, M. & Goodman, R.H. 2010. A beta‐catenin/TCF‐coordinated chromatin loop at MYC integrates 5′ and 3′ Wnt responsive enhancers. Proc Natl Acad Sci USA 107, 145 – 150.en_US
dc.identifier.citedreferenceYokoyama, H., Ogino, H., Stoick‐Cooper, C.L., Grainger, R.M. & Moon, R.T. 2007. Wnt/beta‐catenin signaling has an essential role in the initiation of limb regeneration. Dev Biol 306, 170 – 178.en_US
dc.identifier.citedreferenceYokoyama, N.N., Pate, K.T., Sprowl, S. & Waterman, M.L. 2010. A role for YY1 in repression of dominant negative LEF‐1 expression in colon cancer. Nucleic Acids Res 38, 6375 – 6388.en_US
dc.identifier.citedreferenceYoung, T., Rowland, J.E., van de Ven, C., Bialecka, M., Novoa, A., Carapuco, M., van Nes, J., de Graaff, W., Duluc, I., Freund, J.N., Beck, F., Mallo, M. & Deschamps, J. 2009. Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos. Dev Cell 17, 516 – 526.en_US
dc.identifier.citedreferenceZamora, M., Manner, J. & Ruiz‐Lozano, P. 2007. Epicardium‐derived progenitor cells require beta‐catenin for coronary artery formation. Proc Natl Acad Sci USA 104, 18109 – 18114.en_US
dc.identifier.citedreferenceZanke, B.W., Greenwood, C.M., Rangrej, J., Kustra, R., Tenesa, A., Farrington, S.M., Prendergast, J., Olschwang, S., Chiang, T., Crowdy, E. et al. 2007. Genome‐wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 39, 989 – 994.en_US
dc.identifier.citedreferenceZardawi, S.J., O’Toole, S.A., Sutherland, R.L. & Musgrove, E.A. 2009. Dysregulation of Hedgehog, Wnt and Notch signalling pathways in breast cancer. Histol Histopathol 24, 385 – 398.en_US
dc.identifier.citedreferenceZecca, M., Basler, K. & Struhl, G. 1996. Direct and long‐range action of a wingless morphogen gradient. Cell 87, 833 – 844.en_US
dc.identifier.citedreferenceZeng, Y.A. & Verheyen, E.M. 2004. Nemo is an inducible antagonist of Wingless signaling during Drosophila wing development. Development 131, 2911 – 2920.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.