Show simple item record

Evolution and Pathophysiology of Chronic Systolic Heart Failure

dc.contributor.authorBleske, Barry E.en_US
dc.date.accessioned2012-03-16T15:52:55Z
dc.date.available2012-03-16T15:52:55Z
dc.date.issued2000-11en_US
dc.identifier.citationBleske, Barry E. (2000). "Evolution and Pathophysiology of Chronic Systolic Heart Failure." Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 20(11P2): 349S-358S. <http://hdl.handle.net/2027.42/90037>en_US
dc.identifier.issn0277-0008en_US
dc.identifier.issn1875-9114en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90037
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleEvolution and Pathophysiology of Chronic Systolic Heart Failureen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan College of Pharmacy and University of Michigan Health Systems, Ann Arbor, Michigan.en_US
dc.identifier.pmid11089706en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90037/1/phco.20.18.349S.34605.pdf
dc.identifier.doi10.1592/phco.20.18.349S.34605en_US
dc.identifier.sourcePharmacotherapy: The Journal of Human Pharmacology and Drug Therapyen_US
dc.identifier.citedreferenceKawahara Y., Sunako M., Tsuda T., Fukuzaki H., Fukumoto Y., Takai Y. Angiotensin II induces expression of the c‐fos gene through protein kinase C activation and calcium ion mobilization in cultured vascular smooth muscle cells. Biochem Biophys Res Commun 1988; 150: 52 – 9.en_US
dc.identifier.citedreferenceTakeda Y., Miyamori I., Yoneda T., et al. Production of aldosterone in isolated rat blood vessels. Hypertension 1995; 25: 170 – 3.en_US
dc.identifier.citedreferenceSilvestre J‐S, Robert V., Heymes C., et al. Myocardial production of aldosterone and corticosterone in the rat: physiological regulation. J Biol Chem 1998; 273: 4883 – 91.en_US
dc.identifier.citedreferenceSwedberg K., Eneroth P., Kjekshus J., et al. Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. Circulation 1990; 82: 1730 – 6.en_US
dc.identifier.citedreferenceBarr CS, Lang CC, Hanson J., Arnott M., Kennedy N., Struthers AD Effects of adding spironolactone to an ACE inhibitor in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol 1995; 76: 1259 – 65.en_US
dc.identifier.citedreferenceWang W., McClaim JM, Zucker IH Aldosterone reduces baroreceptor discharge in the dog. Hypertension 1992; 19: 270 – 7.en_US
dc.identifier.citedreferenceWang W. Chronic administration of aldosterone depresses baroreceptor reflex in the dog. Hypertension 1994; 24: 571 – 5.en_US
dc.identifier.citedreferenceYee KM, Struthers AD Aldosterone blunts the baroreflex response in man. Clin Sci 1998; 95: 687 – 92.en_US
dc.identifier.citedreferenceMyers RW, Pearlman AS, Hayman RM, et al. Beneficial effects of vagal stimulation and bradycardia during experimental acute myocardial ischaemia. Circulation 1974; 49: 943 – 7.en_US
dc.identifier.citedreferenceZuanetti G., Ferrari GM, Proiri SG, Schwartz PJ Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circ Res 1987; 61: 429 – 35.en_US
dc.identifier.citedreferenceBrilla CG, Matsubara LS, Weber KT Anti‐aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Cardiol 1993; 25: 563 – 75.en_US
dc.identifier.citedreferenceMacFadyen RJ, Barr CS, Struthers AD Aldosterone blockade reduces vascular collagen turnover, improves heart rate variability and reduces early morning rise in heart rate in heart failure patients. Cardiovasc Res 1997; 35: 30 – 4.en_US
dc.identifier.citedreferenceWeber KT, Brilla CG Pathological hypertrophy and cardiac interstitium: fibrosis and renin‐angiotensin‐aldosterone system. Circulation 1991; 83: 1849 – 65.en_US
dc.identifier.citedreferenceDuprez DA, De Buyzere ML, Rietzschel ER, et al. Inverse relationship between aldosterone and large artery compliance in chronically treated heart failure patients. Eur Heart J 1998; 19: 1371 – 6.en_US
dc.identifier.citedreferenceRocha R., Chander PN, Khanna K., Zuckerman A., Stier CT Jr. Mineralocorticoid blockade reduces vascular injury in stroke‐prone hypertensive rats. Hypertension 1998; 31: 451 – 8.en_US
dc.identifier.citedreferenceRobert V., Heymes C., Silvestre JS, Sabri A., Swynghedauw B., Delcayre C. Angiotensin AT 1 receptor subtype as a cardiac target of aldosterone: role in aldosterone‐salt‐induced fibrosis. Hypertension 1999; 33: 981 – 6.en_US
dc.identifier.citedreferenceAmerican Heart Association. 2000 heart and stroke statistical update. Available from: http:americanheart.org.en_US
dc.identifier.citedreferenceO'Connell JB The economic burden of heart failure. Clin Cardiol 2000; 23 ( suppl III ): 6 – 10.en_US
dc.identifier.citedreferenceMann DL Mechanisms and models in heart failure. A combinatorial approach. Circulation 1999; 100: 999 – 1008.en_US
dc.identifier.citedreferencePacker M. How should physicians view heart failure? The philosophical and physiological evolution of three conceptual models of the disease. Am J Cardiol 1993; 71: C3 – 11.en_US
dc.identifier.citedreferencePacker M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol 1992; 20: 248 – 54.en_US
dc.identifier.citedreferenceBristow MR The adrenergic nervous system in heart failure. N Engl J Med 1984; 311: 850 – 1.en_US
dc.identifier.citedreferenceMcCall D., O'Rourke RA Congestive heart failure. I. Biochemistry, pathophysiology and neurohumoral mechanisms. Mod Concepts Cardiovasc Dis 1985; 54: 55 – 9.en_US
dc.identifier.citedreferenceTan LB, Jalil JE, Pick R., Janicki JS, Weber KT Cardiac myocyte necrosis induced by angiotensin II. Circ Res 1991; 69: 1185 – 95.en_US
dc.identifier.citedreferenceMann DL, Kent RL, Parsons B., Cooper G. IV Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 1992; 84: 790 – 804.en_US
dc.identifier.citedreferenceBozkurt B., Kribbs S., Clubb FJ Jr, et al. Pathophysiologically relevant concentrations of tumor necrosis factor‐α promote progressive left ventricular dysfunction and remodeling in rats. Circulation 1998; 97: 1382 – 91.en_US
dc.identifier.citedreferenceCohn JN, Johnson G., Ziesche S., et al. A comparison of enalapril with hydralazine‐isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med 1991; 325: 303 – 10.en_US
dc.identifier.citedreferenceThe SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991; 325: 293 – 302.en_US
dc.identifier.citedreferenceThe SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1992; 327: 685 – 91.en_US
dc.identifier.citedreferencePaker M., Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med 1996; 334: 1350 – 5.en_US
dc.identifier.citedreferenceMERIT‐HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomized intervention trial in congestive heart failure (MERIT‐HF). Lancet 1999; 353: 2001 – 7.en_US
dc.identifier.citedreferenceCIBIS‐II Investigators and Committees. The cardiac insufficiency bisoprolol study II (CIBIS‐II): a randomized trial. Lancet 1999; 353: 9 – 13.en_US
dc.identifier.citedreferenceDeedwania PC Endothelin, the bad actor in the play: a marker or mediator of cardiovascular disease. J Am Coll Cardiol 1999; 33: 939 – 42.en_US
dc.identifier.citedreferenceGoldsmith SR Vasopressin: a therapeutic target in congestive heart failure? J Cardiac Failure 1999; 5: 347 – 56.en_US
dc.identifier.citedreferenceLevin ER, Gardner DG, Samson WK Natriuretic peptide. N Engl J Med 1998; 339: 321 – 8.en_US
dc.identifier.citedreferenceColucci WS Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 1997; 80 ( 11A ): 15L – 25.en_US
dc.identifier.citedreferenceKurrelmeyer K., Karla D., Bozkurt B., et al. Cardiac remodeling as a consequence and cause of progressive heart failure. Clin Cardiol 1998; 21 ( suppl I ): 14I – 19.en_US
dc.identifier.citedreferenceCohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984; 311: 819 – 23.en_US
dc.identifier.citedreferenceLeimbach WN Jr, Wallin GB, Victor RG, Aylward PE, Sundlof G., Mark AL Direct evidence from intraneural recordings for increased sympathetic outflow in patients with heart failure. Circulation 1986; 73: 913 – 19.en_US
dc.identifier.citedreferenceBristow MR Mechanism of action of beta‐blocking agents in heart failure. Am J Cardiol 1997; 80: 26L – 40.en_US
dc.identifier.citedreferencePort JD, Wienberger HD, Bisognano JD, et al. Echocardiographic and histopathological characterization of young and old transgenic mice over‐expressing the human β‐adrenergic receptor [abstr]. J Am Coll Cardiol. 1998; 31 ( suppl A ): 177A.en_US
dc.identifier.citedreferenceEngelhardt S., Hein L., Wiesman F., Lohse MJ Progressive hypertrophy and heart failure in β1‐adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 1999; 96: 7059 – 64.en_US
dc.identifier.citedreferenceCommunal C., Singh K., Pimental DR, Colucci WS Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the β‐adrenergic receptor. Circulation 1998; 98: 1329 – 34.en_US
dc.identifier.citedreferenceMilano CA, Dolber PC, Rockman HA, et al. Myocardial expression of a constitutively active α IB ‐adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc. Natl ACad Sci USA 1994; 91: 10109 – 13.en_US
dc.identifier.citedreferenceLiggett SB, Tepe NM, Lorenz JN, et al. Early and delayed consequences of β 2 ‐adrenergic receptor overexpression in mouse hearts. Circulation 2000; 101: 1707 – 14.en_US
dc.identifier.citedreferenceLefkowitz RJ, Rockman HA, Koch WJ Catecholamines, cardiac β‐adrenergic receptors, and heart failure. Circulation 2000; 101: 1634 – 7.en_US
dc.identifier.citedreferenceEsler M., Kaye D., Lambert G., Esler D., Jennings G. Adrenergic nervous system in heart failure. Am J Cardiol 1997; 80: 7L – 14.en_US
dc.identifier.citedreferenceRundquist B., Elam M., Bermann‐Sverrisdottir Y., Eisenhofer G., Friberg P. Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation 1997; 95: 169 – 75.en_US
dc.identifier.citedreferenceBristow MR, Ginsburg R., Fowler M., et al. β 1 ‐ and β 2 ‐adrenergic receptor subpopulations in normal and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contractions and selective β 1 ‐receptor downregulation in heart failure. Circ Res 1986; 59: 297 – 309.en_US
dc.identifier.citedreferenceBrodde OE, Schuler S., Kretsch R., et al. Regional distribution of β‐adrenoceptors in the human heart: coexistence of functional β 1 ‐ and β 2 ‐adrenoceptors in both atria and ventricles in severe congestive cardiomyopathy. J Cardiovasc Pharmacol 1986; 8: 1235 – 42.en_US
dc.identifier.citedreferenceBristow MR Changes in myocardial and vascular receptors in heart failure. J Am Coll Cardiol 1993; 22 ( suppl A ): 61A – 71.en_US
dc.identifier.citedreferenceBristow MR β‐Adrenergic receptor blockade in chronic heart failure. Circulation 2000; 101: 558 – 69.en_US
dc.identifier.citedreferenceBristow MR, Anderson FL, Port JD, et al. Differences in β‐adrenergic neuroeffector mechanisms in ischemic vs. idiopathic dilated cardiomyopathy. Circulation 1991; 84: 1024 – 39.en_US
dc.identifier.citedreferenceBristow MR, Minobe W., Rasmussen R., et al. β‐Adrenergic neuroeffector abnormalities in the failing human heart are produced by local, rather than systemic mechanisms. J Clin Invest 1992; 89: 803 – 15.en_US
dc.identifier.citedreferenceBristow MR, Hershberger RE, Port JD, Rasmussen R. β 1 and β 2 adrenergic receptor mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol Pharmacol 1989; 35: 295 – 303.en_US
dc.identifier.citedreferenceKoch WJ, Rockman HA, Samama P., et al. Cardiac function in mice overexpressing the β‐adrenergic receptor kinase or a βARK inhibitor. Science 1995; 268: 1350 – 3.en_US
dc.identifier.citedreferenceUngerer M., Parruti G., Bohm M., et al. Expression of β‐arrestins and β‐adrenergic receptor kinases in the failing human heart. Circ Res 1994; 74: 206 – 13.en_US
dc.identifier.citedreferenceFreedman NJ, Liggett SB, Drachman DE, et al. Phosphorylation and desensitization of the human β 1 ‐adrenergic receptor. J Biol Chem 1995; 270: 17953 – 61.en_US
dc.identifier.citedreferenceRoth NS, Campbell PT, Caron MG, et al. Comparative rates of desensitization of β‐adrenergic receptors by the β‐adrenergic receptor kinase and the cyclic AMP‐dependent protein kinase. Proc Natl Acad Sci USA 1991; 88: 6201 – 4.en_US
dc.identifier.citedreferenceFeldman AM, Gates AE, Veazey WB, et al. Increase of the M r 40,000 pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest 1988; 82: 189 – 97.en_US
dc.identifier.citedreferenceFeldman AM, Jackson DG, Bristow MR, Cates AE, Van Dop C. Immunodetectable levels of the inhibitory guanine nucleotide binding proteins in failing human heart: discordance with measurements of adenylate cyclase activity and levels of pertussis toxin substrate. J Mol Cell Cardiol 1991; 23: 439 – 52.en_US
dc.identifier.citedreferenceNeumann J., Schmitz W., Scholz H., Myernick LV, Doring V., Kalma P. Increase in myocardial G i proteins in heart failure. Lancet 1988; 2: 936 – 7.en_US
dc.identifier.citedreferenceBohm M., Eschenhagen T., Gierschik P., et al. Radioimmuno‐chemical quantifications of GIa in right and left ventricles from patients with ischemic and dilated cardiomyopathy and predominant left ventricular failure. J Mol Cell Cardiol 1994; 26: 133 – 49.en_US
dc.identifier.citedreferenceHaft JI Cardiovascular injury induced by sympathetic catecholamines. Prog Cardiovasc Dis 1974; 17: 73 – 85.en_US
dc.identifier.citedreferenceSabbah HN The cellular and physiological effects of beta blockers in heart failure. Clin Cardiol 1999; 22 ( suppl V ): V16 – 20.en_US
dc.identifier.citedreferenceSearle J., Kerr JF, Bishop CJ Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathol Annu 1982; 17: 229 – 59.en_US
dc.identifier.citedreferenceNarula J., Haider N., Virmani R., et al. Apoptosis in myocytes in end‐stage heart failure. N Engl J Med 1996; 335: 1182 – 9.en_US
dc.identifier.citedreferenceGeng YJ, Ichikawa Y., Vatner DE, et al. Overexpression of Gsα accelerates programmed death (apoptosis) of myocardiocytes in transgenic mice [abstr]. Circulation Suppl 1996; 94: 1640.en_US
dc.identifier.citedreferenceCommunal C., Singh K., Sawyer DE, et al. Opposing effects of β 1 ‐ and β 2 ‐adrenergic receptors on cardiac apoptosis: role of a pertussis toxin‐sensitive G protein. Circulation 1999; 100: 2210 – 12.en_US
dc.identifier.citedreferenceZaugg M., Xu W., Lucchinetti E., Shafiq SA, Jamali NZ, Siddiqui MAQ. β‐Adrenergic receptor subtypes differentially affect apoptosis in adult rat ventricular myocytes. Circulation 2000; 102: 344 – 50.en_US
dc.identifier.citedreferenceDaaka Y., Luttrell LM, Lefkowitz RJ Switching of the coupling of the β2‐adrenergic receptor to different G proteins by protein kinase A. Nature 1997; 390: 88 – 91.en_US
dc.identifier.citedreferenceSheng Z., Knowlton K., Chen J., et al. Cardiotrophin 1 (CT‐1) inhibition of cardiac myocyte apoptosis via a mitogen‐activated protein kinase‐dependent pathway. J Biol Chem 1997; 272: 5783 – 91.en_US
dc.identifier.citedreferenceArai M., Alpert NR, MacLennan DH, Barton P., Periasamy M. Alterations in sarcoplasmic reticulum gene expression in human heart failure. Circ Res 1993; 72: 463 – 9.en_US
dc.identifier.citedreferenceTakahashi N., Calderone A., Izzo NJ Jr, Maki TM, Marsh JD, Colucci WS Hypertrophic stimuli‐induced transforming growth factor‐β 1 expression in rat ventricular myocytes. J Clin Invest 1994; 94: 1470 – 83.en_US
dc.identifier.citedreferenceParker TG, Parker SE, Schneider MD Peptide growth factors can provoke “fetal” contractile protein gene expression in rat cardiac myocytes. J Clin Invest 1990; 85: 507 – 14.en_US
dc.identifier.citedreferenceCalderone A., Takahashi N., Izzo NJ, Thaik CN, Colucci WS Pressure‐ and volume ‐induced left ventricular hypertrophies are associated with distinct myocyte phenotypes and differential induction of peptide growth factor mRNAs. Circulation 1995; 92: 2385 – 90.en_US
dc.identifier.citedreferenceSchwartz K., Boheler KR, DeLaBastie D., Lompre A‐M, Mercadier J‐J Switches in cardiac muscle gene expression as a result of pressure and volume overload. Am J Physiol 1992; 262: R364 – 9.en_US
dc.identifier.citedreferenceLowes BD, Minobe W., Abraham WT, et al. Changes in gene expression in the intact human heart: downregulation of alpha‐myosin heavy chain in hypertrophied, failing ventricular myocardium. J Clin Invest 1997; 100: 2315 – 24.en_US
dc.identifier.citedreferencePeach MJ Renin‐angiotensin system: biochemistry and mechanisms of action. Physiol Rev 1977; 57 ( 2 ): 313 – 70.en_US
dc.identifier.citedreferenceDzau VJ Multiple pathways of angiotensin production in the blood vessel wall: evidence, possibilities and hypotheses. J Hypertens 1989; 7: 933 – 6.en_US
dc.identifier.citedreferenceUrata H., Kinoshita A., Misono KS, Bumpus FM, Husain A. Identification of a highly specific chymase as the major angiotensin II‐forming enzyme in human heart. J Biol Chem 1990; 265: 22348 – 57.en_US
dc.identifier.citedreferenceDzau VJ, Gonzalez D., Kaempfer C., Dubin D., Wintroub BU Human neutrophils release serine proteases capable of activating prorenin. Circ Res 1987; 60: 595 – 601.en_US
dc.identifier.citedreferenceWintroub BU, Klickstein LB, Watt KW A human neutrophil dependent pathway for generation of ang II. J Clin Invest 1981; 68: 484 – 90.en_US
dc.identifier.citedreferenceDzau VJ, Sasamura H., Hein L. Heterogeneity of angiotensin synthetic pathways and receptor subtypes; physiological and pharmacological implications. J Hypertens 1993; 11: S13 – 18.en_US
dc.identifier.citedreferenceBoucher R., Asselin JH, Genest J. A new enzyme leading to direct formation of angiotensin II. Circ Res 1994; 34 ( suppl 1 ): 1203 – 9.en_US
dc.identifier.citedreferenceBoucher R., Demassieux S., Garcia R., Genest J. Tonin, angiotensin II system, a review. Circ Res 1977; 41: 26 – 9.en_US
dc.identifier.citedreferenceOkunishi H., Miyazaki M., Toda N. Evidence for a putatively new angiotensin II‐generating enzyme in the vascular wall. J Hypertens 1984; 2: 277 – 84.en_US
dc.identifier.citedreferenceUrata H., Healy B., Stewart RW, Bumpus FM, Husain A. Angiotensin II‐forming pathways in normal and failing human hearts. Circ Res 1990; 66 ( 4 ): 883 – 90.en_US
dc.identifier.citedreferenceRoks A., Buikema H., Pinto YM, Van Gilst WH The renin‐angiotensin system and vascular function: the role of angiotensin II, angiotensin converting enzyme, and alternative conversion of angiotensin I. Heart Vessels 1997; suppl 12: 119 – 24.en_US
dc.identifier.citedreferenceMosimann R., Imboden H., Felix D. The neuronal role of angiotensin II in thirst, sodium appetite, cognition and memory. Biol Rev 1996; 71: 545 – 59.en_US
dc.identifier.citedreferenceCampbell D. Circulating and tissue angiotensin systems. J Clin Invest 1987; 79: 1 – 6.en_US
dc.identifier.citedreferenceDzau VJ Circulation versus local renin‐angiotensin system in cardiovascular homeostasis. Circulation 1988; 77 ( suppl I ): I4 – 13.en_US
dc.identifier.citedreferenceUnger T., Gohilke P., Paul M., Rettig R. Tissue renin‐angiotensin systems: fact or fiction? J Cardiovasc Pharmacol 1991; 18 ( suppl 2 ): S20 – 5.en_US
dc.identifier.citedreferenceChiu AT, Herblin WF, McCall DE, et al. Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 1989; 165: 196 – 203.en_US
dc.identifier.citedreferenceWhitebread S., Mele M., Kamber B., De Gasparo M. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun 1989; 163: 284 – 91.en_US
dc.identifier.citedreferenceWharton J., Morgan K., Rutherford AD, et al. Differential distribution of angiotensin AT 2 receptors in the normal and failing human heart. J Pharmacol Exp Ther 1998; 284: 323 – 36.en_US
dc.identifier.citedreferenceNozawa Y., Haruno A., Oda N., et al. Angiotensin II receptor subtypes in bovine and human ventricular myocardium. J Pharmacol Exp Ther 1994; 270: 566 – 71.en_US
dc.identifier.citedreferenceRogg H., De Gasparo M., Graedel E., et al. Angiotensin II‐receptor subtypes in the human atria and evidence for alterations in the patients with cardiac dysfunction. Eur Heart J 1996; 17: 1112 – 20.en_US
dc.identifier.citedreferenceSander GE, McKinnie JJ, Greenberg SS, Giles TD Angiotensin‐converting enzyme inhibitors and angiotensin II receptor antagonists in the treatment of heart failure caused by left ventricular systolic dysfunction. Prog Cardiovasc Dis 1999; 41: 265 – 300.en_US
dc.identifier.citedreferenceBottari SP, Taylor V., King I.N., Bogdal Y., Whitebread S., De Gasparo M. Angiotensin II AT 2 receptors do not interact with guanine nucleotide binding proteins. Eur J Pharmacol 1991; 207: 157 – 63.en_US
dc.identifier.citedreferenceGarrison JC, Johnson DE, Campanile CP Evidence for the role of phosphorylase kinase, protein kinase C and other Ca2+ sensitive protein kinases in the response of hepatocytes to angiotensin II and vasopression. J Biol Chem 1988; 259: 3283 – 92.en_US
dc.identifier.citedreferenceBuisson B., Bottari SP, De Gasparo M., Gallo‐Payet N., Payet MD The angiotensin AT 2 receptor modulates T‐type calcium current in non‐differentiated NG 108‐15 cells. FEBS Lett 1992; 309: 161 – 4.en_US
dc.identifier.citedreferenceChung O., Csikos T., Unger T. Angiotensin II receptor pharmacology and AT 1 ‐receptor blockers. J Hum Hypertens 1999; 13 ( suppl 1 ): S11 – 20.en_US
dc.identifier.citedreferenceOhyama K., Yamano Y., Chaki SW, et al. Domains of G‐protein coupling in angiotensin II receptor type I: studies by site‐directed mutagenesis. Biochem Biophys Res Commun 1992; 189: 677 – 83.en_US
dc.identifier.citedreferenceSpat A., Enyedi P., Hajnoczky G., et al. Generation and role of calcium signal in adrenal glomerulosa cells. Exp Physiol 1991; 76: 859 – 85.en_US
dc.identifier.citedreferenceMarrero MB, Schieffer B., Paxton WG Direct stimulation of Jak/STAT pathway by the angiotensin II AT 1 receptor. Nature 1995; 375: 247 – 50.en_US
dc.identifier.citedreferencePan J., Fukuda K., Kodama J., et al. Role of angiotensin II in activation of the JAK/STAT pathway induced by acute pressure overload in the rat heart. Circ Res 1997; 81: 611 – 17.en_US
dc.identifier.citedreferenceMarrero MB, Schieffer B., Li B., Sun J., Harp JB, Ling BN Role of Janus kinase/signal transducer and activator of transcription and mitogen‐activated protein kinase cascades in angiotensin II and platelet‐derived growth factor‐induced vascular smooth muscle cell proliferation. J Biol Chem 1997; 272: 24684 – 90.en_US
dc.identifier.citedreferenceBhat GJ, Thekkumkara TJ, Thomas WG, Conrad KM, Baker KM Angiotensin II stimulates sis‐inducing factor‐like DNA binding activity. Evidence that the AT 1A receptor activates transcription factor‐Stat91 and/or a related protein. J Biol Chem 1994; 269: 31443 – 9.en_US
dc.identifier.citedreferenceSadoshima J‐I, Izumo S. Signal transduction pathways of angiotensin II‐induced c‐fos gene expression in cardiac myocytes in vitro. Role of phospholipid‐derived second messengers. Circ Res 1993; 73: 424 – 38.en_US
dc.identifier.citedreferenceNaftilan A., Pratt RE, Eldridge CS, Dzau VJ Angiotensin II induces c‐fos expression in smooth muscle cells via transcriptional control. Hypertension 1989; 13: 706 – 11.en_US
dc.identifier.citedreferenceTaubman MB, Berk BC, Izumo S., Tsuda T., Alexander RW, Nadal‐Ginard B. Angiotensin II induces c‐fos mRNA in aortic smooth muscle. J Biol Chem 1989; 264: 526 – 30.en_US
dc.identifier.citedreferenceGohlke P., Pees C., Unger T. AT 2 ‐receptor stimulation increases aortic cyclic GMP levels in SHRSP by a kinin‐dependent pathway. Hypertension 1998; 31: 349 – 55.en_US
dc.identifier.citedreferenceStoll M., Steckelings UM, Paul M., Bottari SP, Metzger R., Unger T. The angiotensin AT 2 ‐receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 1995; 95: 651 – 7.en_US
dc.identifier.citedreferenceNakajima M., Hutchinson HG, Fujinaga M., et al. The angiotensin II type 2 (AT 2 ) receptor antagonizes the growth effects of the AT 1 receptor: gain of function study using in vivo gene transfer. Proc Natl Acad Sci USA 1995; 92: 10663 – 7.en_US
dc.identifier.citedreferenceMeffert S., Stoll M., Steckelings MU, Bottari SP, Unger T. The angiotensin AT 2 receptor inhibits proliferation and promotes differentiation in PC12W cells. Mol Cell Endocrinol 1996; 122: 59 – 67.en_US
dc.identifier.citedreferenceYamada T., Horiuchi M., Dzau VJ Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 1996; 93: 156 – 60.en_US
dc.identifier.citedreferenceTanaka M., Ohnishi J., Ozawa Y., Sugimoto M., Usuki S., Naruse M. Characterization of angiotensin II receptor type 2 during differentiation and apoptosis of rat ovarian cultured granulosa cells. Biochem Biophys Res Commun 1995; 207: 593 – 8.en_US
dc.identifier.citedreferenceHajnoczky G., Varnai P., Hollo Z., et al. Thapsigargin‐induced increase in cytoplasmic Ca 2+ concentration and aldosterone production in rat adrenal glomerulosa cells: interaction with potassium and angiotensin‐II. Endocrinology 1991; 128: 2639 – 44.en_US
dc.identifier.citedreferenceSzalay KS, Beck M., Toth M., De Chatel R. Interactions between ouabain, atrial natriuretic peptide, angiotensin‐II and potassium: effects on rat zona glomerulosa aldosterone production. Life Sci 1998; 62: 1845 – 52.en_US
dc.identifier.citedreferenceOkubo S., Niimura F., Nishimura H., et al. Angiotensin‐independent mechanism for aldosterone synthesis during chronic extracellular fluid volume depletion. J Clin Invest 1997; 99: 855 – 60.en_US
dc.identifier.citedreferenceAyers CR, Davis JO, Lieberman F., Carpenter CCJ, Berman M. The effects of chronic hepatic venous congestion on the metabolism of d, 1‐aldosterone and d‐aldosterone. J Clin Invest 1962; 41: 884 – 95.en_US
dc.identifier.citedreferenceTait JF, Bougas J., Little B., Tait SAS, Flood C. Splanchnic extraction and clearance of aldosterone in subjects with minimal and marked cardiac dysfunction. J Clin Endocrinol Metab 1965; 25: 219 – 28.en_US
dc.identifier.citedreferenceMacFadyen RJ, Lee AFC, Morton JJ, Pringle SD, Struthers AD How often are angiotensin II and aldosterone concentrations raised during chronic ACE inhibitor treatment in cardiac failure? Heart 1999; 82: 57 – 61.en_US
dc.identifier.citedreferenceStruthers AD Why does spironolactone improve mortality over and above an ACE inhibitor in chronic heart failure? Br J Clin Pharmacol 1999; 47: 479 – 82.en_US
dc.identifier.citedreferenceBiollaz J., Brunner HR, Gavras I., et al. Antihypertensive therapy with MK 421: angiotensin II‐renin relationships to evaluate efficacy of converting enzyme blockade. J Cardiovasc Pharmacol 1982; 4: 966 – 72.en_US
dc.identifier.citedreferenceSlight SH, Joesph J., Ganjam VK, Weber KT Extra‐adrenal mineralocorticoids and cardiovascular tissue. J Mol Cell Cardiol 1999; 31: 1175 – 84.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.