Show simple item record

Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts

dc.contributor.authorMendias, Christopher L.en_US
dc.contributor.authorGumucio, Jonathan P.en_US
dc.contributor.authorBakhurin, Konstantin I.en_US
dc.contributor.authorLynch, Evan B.en_US
dc.contributor.authorBrooks, Susan V.en_US
dc.date.accessioned2012-03-16T15:53:52Z
dc.date.available2013-06-11T19:15:37Zen_US
dc.date.issued2012-04en_US
dc.identifier.citationMendias, Christopher L.; Gumucio, Jonathan P.; Bakhurin, Konstantin I.; Lynch, Evan B.; Brooks, Susan V. (2012). "Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts." Journal of Orthopaedic Research 30(4): 606-612. <http://hdl.handle.net/2027.42/90076>en_US
dc.identifier.issn0736-0266en_US
dc.identifier.issn1554-527Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90076
dc.description.abstractScleraxis is a basic helix–loop–helix transcription factor that plays a central role in promoting fibroblast proliferation and matrix synthesis during the embryonic development of tendons. Mice with a targeted inactivation of scleraxis ( Scx −/− ) fail to properly form limb tendons, but the role that scleraxis has in regulating the growth and adaptation of tendons of adult organisms is unknown. To determine if scleraxis expression changes in response to a physiological growth stimulus to tendons, we subjected adult mice that express green fluorescent protein (GFP) under the control of the scleraxis promoter ( ScxGFP ) to a 6‐week‐treadmill training program designed to induce adaptive growth in Achilles tendons. Age matched sedentary ScxGFP mice were used as controls. Scleraxis expression was sparsely observed in the epitenon region of sedentary mice, but in response to treadmill training, scleraxis was robustly expressed in fibroblasts that appeared to be emerging from the epitenon and migrating into the superficial regions of tendon fascicles. Treadmill training also led to an increase in scleraxis, tenomodulin, and type I collagen gene expression as measured by qPCR. These results suggest that in addition to regulating the embryonic formation of limb tendons, scleraxis also appears to play an important role in the adaptation of adult tendons to physiological loading. © 2011 Orthopaedic Research Society. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 30:606–612, 2012en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherTenomodulinen_US
dc.subject.otherEpitenonen_US
dc.subject.otherTendonen_US
dc.subject.otherScleraxisen_US
dc.subject.otherCollagen 1en_US
dc.titlePhysiological loading of tendons induces scleraxis expression in epitenon fibroblastsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumOrthopaedic Surgery, University of Michigan, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, 48109en_US
dc.contributor.affiliationumKinesiology, University of Michigan, Ann Arbor, 48109en_US
dc.contributor.affiliationumMolecular and Integrative Physiology, University of Michigan, Ann Arbor, 48109en_US
dc.contributor.affiliationumBiomedical Engineering, University of Michigan, Ann Arbor, 48109en_US
dc.contributor.affiliationumOrthopaedic Surgery, University of Michigan, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, 48109. T: 734‐764‐3250; F: 734‐647‐0003;en_US
dc.identifier.pmid21913219en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90076/1/21550_ftp.pdf
dc.identifier.doi10.1002/jor.21550en_US
dc.identifier.sourceJournal of Orthopaedic Researchen_US
dc.identifier.citedreferenceSchmittgen TD, Livak KJ. 2008. Analyzing real‐time PCR data by the comparative C(T) method. Nat Protoc 3: 1101 – 1108.en_US
dc.identifier.citedreferencePryce BA, Brent AE, Murchison ND, et al. 2007. Generation of transgenic tendon reporters, ScxGFP and ScxAP, using regulatory elements of the scleraxis gene. Dev Dyn 236: 1677 – 1682.en_US
dc.identifier.citedreferenceGulotta LV, Kovacevic D, Packer JD, et al. 2011. Bone marrow‐derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am J Sports Med 39: 1282 – 1289.en_US
dc.identifier.citedreferenceMendias CL, Bakhurin KI, Faulkner JA. 2008. Tendons of myostatin‐deficient mice are small, brittle, and hypocellular. Proc Natl Acad Sci USA 105: 388 – 393.en_US
dc.identifier.citedreferenceLoiselle AE, Bragdon GA, Jacobson JA, et al. 2009. Remodeling of murine intrasynovial tendon adhesions following injury: MMP and neotendon gene expression. J Orthop Res 27: 833 – 840.en_US
dc.identifier.citedreferenceScott A, Sampaio A, Abraham T, et al. 2011. Scleraxis expression is coordinately regulated in a murine model of patellar tendon injury. J Orthop Res 29: 289 – 296.en_US
dc.identifier.citedreferenceEliasson P, Andersson T, Aspenberg P. 2009. Rat Achilles tendon healing: mechanical loading and gene expression. J Appl Physiol 107: 399 – 407.en_US
dc.identifier.citedreferenceMaeda T, Sakabe T, Sunaga A, et al. 2011. Conversion of mechanical force into TGF‐β‐mediated biochemical signals. Curr Biol 21: 933 – 941.en_US
dc.identifier.citedreferenceDocheva D, Hunziker EB, Fässler R, et al. 2005. Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol Cell Biol 25: 699 – 705.en_US
dc.identifier.citedreferenceJelinsky S, Archambault J, Li L, et al. 2010. Tendon‐selective genes identified from rat and human musculoskeletal tissues. J Orthop Res 28: 289 – 297.en_US
dc.identifier.citedreferenceShukunami C, Oshima Y, Hiraki Y. 2005. Chondromodulin‐I and tenomodulin: a new class of tissue‐specific angiogenesis inhibitors found in hypovascular connective tissues. Biochem Biophys Res Commun 333: 299 – 307.en_US
dc.identifier.citedreferenceShukunami C, Takimoto A, Oro M, et al. 2006. Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev Biol 298: 234 – 247.en_US
dc.identifier.citedreferenceMichna H. 1984. Morphometric analysis of loading‐induced changes in collagen‐fibril populations in young tendons. Cell Tissue Res 236: 465 – 470.en_US
dc.identifier.citedreferenceLivak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real‐time quantitative PCR and the 2(‐Delta Delta C(T)) Method. Methods 25: 402 – 408.en_US
dc.identifier.citedreferenceLéjard V, Brideau G, Blais F, et al. 2007. Scleraxis and NFATc regulate the expression of the pro‐alpha 1(I) collagen gene in tendon fibroblasts. J Biol Chem 282: 17665 – 17675.en_US
dc.identifier.citedreferencePryce BA, Watson SS, Murchison ND, et al. et al. 2009. Recruitment and maintenance of tendon progenitors by TGF{beta} signaling are essential for tendon formation. Development 136: 1351 – 1361.en_US
dc.identifier.citedreferenceLorda‐Diez CI, Montero JA, Martinez‐Cue C, et al. 2009. Transforming growth factors beta coordinate cartilage and tendon differentiation in the developing limb mesenchyme. J Biol Chem 284: 29988 – 29996.en_US
dc.identifier.citedreferenceHeinemeier K, Langberg H, Olesen JL, et al. 2003. Role of TGF‐beta1 in relation to exercise‐induced type I collagen synthesis in human tendinous tissue. J Appl Physiol 95: 2390 – 2397.en_US
dc.identifier.citedreferenceEliasson P, Andersson T, Kulas J, et al. 2009. Myostatin in tendon maintenance and repair. Growth Factors 27: 247 – 254.en_US
dc.identifier.citedreferenceTaylor SH, Al‐Youha S, Van Agtmael T, et al. 2011. Tendon is covered by a basement membrane epithelium that is required for cell retention and the prevention of adhesion formation. PLoS ONE 6: e16337.en_US
dc.identifier.citedreferenceManske PR, Lesker PA. 1984. Histologic evidence of intrinsic flexor tendon repair in various experimental animals. An in vitro study. Clin Orthop Relat Res 182: 297 – 304.en_US
dc.identifier.citedreferenceGelberman RH, Steinberg D, Amiel D, et al. 1991. Fibroblast chemotaxis after tendon repair. J Hand Surg Am 16: 686 – 693.en_US
dc.identifier.citedreferenceJones ME, Mudera V, Brown RA, et al. 2003. The early surface cell response to flexor tendon injury. J Hand Surg 28: 221 – 230.en_US
dc.identifier.citedreferenceBi Y, Ehirchiou D, Kilts TM, et al. 2007. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 13: 1219 – 1227.en_US
dc.identifier.citedreferenceZhang J, Pan T, Liu Y, et al. 2010. Mouse treadmill running enhances tendons by expanding the pool of tendon stem cells (TSCs) and TSC‐related cellular production of collagen. J Orthop Res 28: 1178 – 1183.en_US
dc.identifier.citedreferenceZhang J, Wang JH‐C. 2010. Production of PGE(2) increases in tendons subjected to repetitive mechanical loading and induces differentiation of tendon stem cells into non‐tenocytes. J Orthop Res 28: 198 – 203.en_US
dc.identifier.citedreferenceMaffulli N, Wong J, Almekinders LC. 2003. Types and epidemiology of tendinopathy. Clin Sports Med 22: 675 – 692.en_US
dc.identifier.citedreferenceKhan K, Cook J. 2003. The painful nonruptured tendon: clinical aspects. Clin Sports Med 22: 711 – 725.en_US
dc.identifier.citedreferenceKjaer M. 2004. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 84: 649 – 698.en_US
dc.identifier.citedreferenceWang JH‐C. 2006. Mechanobiology of tendon. J Biomech 39: 1563 – 1582.en_US
dc.identifier.citedreferenceFontana K, Almeida FM, Tomiosso TC, et al. 2010. Effect of high intensity aerobic exercise and mesterolone on remodeling of Achilles tendon of C57BL/6 transgenic mice. Cell Tissue Res 339: 411 – 420.en_US
dc.identifier.citedreferenceMichna H, Hartmann G. 1989. Adaptation of tendon collagen to exercise. Int Orthop 13: 161 – 165.en_US
dc.identifier.citedreferenceSuominen H, Kiiskinen A, Heikkinen E. 1980. Effects of physical training on metabolism of connective tissues in young mice. Acta Physiol Scand 108: 17 – 22.en_US
dc.identifier.citedreferenceSharma P, Maffulli N. 2006. Biology of tendon injury: healing, modeling and remodeling. J Musculoskelet Neuronal Interact 6: 181 – 190.en_US
dc.identifier.citedreferenceGayraud‐Morel B, Chretien F, Tajbakhsh S. 2009. Skeletal muscle as a paradigm for regenerative biology and medicine. Regen Med 4: 293 – 319.en_US
dc.identifier.citedreferenceMurchison ND, Price BA, Conner DA, et al. 2007. Regulation of tendon differentiation by scleraxis distinguishes force‐transmitting tendons from muscle‐anchoring tendons. Development 134: 2697 – 2708.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.