Show simple item record

Supercapacitors Based on c‐ Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria

dc.contributor.authorMalvankar, Nikhil S.en_US
dc.contributor.authorMester, Tündeen_US
dc.contributor.authorTuominen, Mark T.en_US
dc.contributor.authorLovley, Derek R.en_US
dc.date.accessioned2012-03-16T15:54:02Z
dc.date.available2013-04-01T14:17:25Zen_US
dc.date.issued2012-02en_US
dc.identifier.citationMalvankar, Nikhil S.; Mester, Tünde ; Tuominen, Mark T.; Lovley, Derek R. (2012). "Supercapacitors Based on câ Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria." ChemPhysChem 13(2): 463-468. <http://hdl.handle.net/2027.42/90083>en_US
dc.identifier.issn1439-4235en_US
dc.identifier.issn1439-7641en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90083
dc.description.abstractSupercapacitors have attracted interest in energy storage because they have the potential to complement or replace batteries. Here, we report that c ‐type cytochromes, naturally immersed in a living, electrically conductive microbial biofilm, greatly enhance the device capacitance by over two orders of magnitude. We employ genetic engineering, protein unfolding and Nernstian modeling for in vivo demonstration of charge storage capacity of c ‐type cytochromes and perform electrochemical impedance spectroscopy, cyclic voltammetry and charge–discharge cycling to confirm the pseudocapacitive, redox nature of biofilm capacitance. The biofilms also show low self‐discharge and good charge/discharge reversibility. The superior electrochemical performance of the biofilm is related to its high abundance of cytochromes, providing large electron storage capacity, its nanostructured network with metallic‐like conductivity, and its porous architecture with hydrous nature, offering prospects for future low cost and environmentally sustainable energy storage devices. Living supercapacitors: The capacitance of an electrode‐based device can be enhanced 100‐fold using the redox chemistry of c ‐type cytochromes naturally embedded in an electrically conductive network of living bacteria (see picture). This study demonstrates the unique survival strategy by metal‐respiring bacteria when electron acceptors are temporarily unavailable and suggests a novel method for supercapacitive energy storage using self‐renewing microbes.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherBacteriaen_US
dc.subject.otherSupercapacitorsen_US
dc.subject.otherRedox Chemistryen_US
dc.subject.otherElectrochemistryen_US
dc.subject.otherCytochromesen_US
dc.titleSupercapacitors Based on c‐ Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteriaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCurrent address: University of Michigan Medical School and Veterans Affairs Medical Research Center, Ann Arbor, Michigan 48105, USA.en_US
dc.contributor.affiliationotherDepartment of Microbiology, University of Massachusetts, Amherst (USA)en_US
dc.contributor.affiliationotherDepartment of Physics, University of Massachusetts, Amherst, 203, Morrill Science Center IVN, 639 North Pleasant Street, Amherst, MA 01003 (USA), Fax: (+1) 413‐577‐4660en_US
dc.contributor.affiliationotherDepartment of Physics, University of Massachusetts, Amherst, 203, Morrill Science Center IVN, 639 North Pleasant Street, Amherst, MA 01003 (USA), Fax: (+1) 413‐577‐4660en_US
dc.identifier.pmid22253215en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90083/1/cphc_201100865_sm_miscellaneous_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90083/2/463_ftp.pdf
dc.identifier.doi10.1002/cphc.201100865en_US
dc.identifier.sourceChemPhysChemen_US
dc.identifier.citedreferenceH. Yi, K. P. Nevin, B. C. Kim, A. E. Franks, A. Klimes, L. M. Tender, D. R. Lovley, Biosens. Bioelectron. 2009, 24, 3498 – 3503.en_US
dc.identifier.citedreferenceT. A. Skotheim, J. R. Reynolds, Handbook of Conducting Polymers, 2nd ed., CRC Press, Boca Raton, 2007.en_US
dc.identifier.citedreferenceL. L. Zhang, X. S. Zhao, Chem. Soc. Rev. 2009, 38, 2520 – 2531.en_US
dc.identifier.citedreferenceS. Roldán, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Angew. Chem. 2011, 123, 1737 – 1739; Angew. Chem. Int. Ed. 2011, 50, 1699 – 1701.en_US
dc.identifier.citedreferenceY. J. Lee, H. Yi, W. J. Kim, K. Kang, D. S. Yun, M. S. Strano, G. Ceder, A. M. Belcher, Science 2009, 324, 1051 – 1055.en_US
dc.identifier.citedreferenceD. R. Lovley, T. Ueki, T. Zhang, N. S. Malvankar, P. M. Shrestha, K. Flanagan, M. Aklujkar, J. E. Butler, L. Giloteaux, A. E. Rotaru, D. E. Holmes, A. E. Franks, R. Orellana, C. Risso, K. P. Nevin, Adv. Microb. Physiol. 2011, 59, 1 – 100.en_US
dc.identifier.citedreferenceB. A. Methe, K. E. Nelson, J. A. Eisen, I. T. Paulsen, W. Nelson, J. F. Heidelberg, D. Wu, M. Wu, N. Ward, M. J. Beanan, R. J. Dodson, R. Madupu, L. M. Brinkac, S. C. Daugherty, R. T. DeBoy, A. S. Durkin, M. Gwinn, J. F. Kolonay, S. A. Sullivan, D. H. Haft, J. Selengut, T. M. Davidsen, N. Zafar, O. White, B. Tran, C. Romero, H. A. Forberger, J. Weidman, H. Khouri, T. V. Feldblyum, T. R. Utterback, S. E. Van Aken, D. R. Lovley, C. M. Fraser, Science 2003, 302, 1967 – 1969.en_US
dc.identifier.citedreferenceA. Esteve‐Núñnez, J. Sosnik, P. Visconti, D. R. Lovley, Environ. Microbiol. 2008, 10, 497 – 505.en_US
dc.identifier.citedreferenceD. R. Lovley, Geobiology 2008, 6, 225 – 231.en_US
dc.identifier.citedreferenceJ. Zhao, Y. Fang, T. D. Scheibe, D. R. Lovley, R. Mahadevan, J. Contam. Hydrol. 2010, 112, 30 – 44.en_US
dc.identifier.citedreferenceY. Liu, H. Kim, R. R. Franklin, D. R. Bond, ChemPhysChem 2011, 12, 2235 – 2241.en_US
dc.identifier.citedreferenceD. Schrott Germán, B. P. Sebastian, R. Luciana, E.‐N. Abraham, J. Pablo Busalmen, Electrochim. Acta 2011, 56, 10791 – 10795.en_US
dc.identifier.citedreferenceN. S. Malvankar, M. Vargas, K. P. Nevin, A. E. Franks, C. Leang, B. C. Kim, K. Inoue, T. Mester, S. F. Covalla, J. P. Johnson, V. M. Rotello, M. T. Tuominen, D. R. Lovley, Nat. Nanotechnol. 2011, 6, 573 – 579.en_US
dc.identifier.citedreferenceD. Herbert‐Guillou, B. Tribollet, D. Festy, L. Kiéné, Electrochim. Acta 1999, 45, 1067 – 1075.en_US
dc.identifier.citedreferenceJ. W. Voordeckers, B. C. Kim, M. Izallalen, D. R. Lovley, Appl. Environ. Microbiol. 2010, 76, 2371 – 2375.en_US
dc.identifier.citedreferenceT. Mehta, M. V. Coppi, S. E. Childers, D. R. Lovley, Appl. Environ. Microbiol. 2005, 71, 8634 – 8641.en_US
dc.identifier.citedreferenceB. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer/Plenum, New York, 1999.en_US
dc.identifier.citedreferenceS. Roldán, Z. González, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Electrochim. Acta 2011, 56, 3401 – 3405.en_US
dc.identifier.citedreferenceH. Richter, K. P. Nevin, H. Jia, D. A. Lowy, D. R. Lovley, L. M. Tender, Energy Environ. Sci. 2009, 2, 506 – 516.en_US
dc.identifier.citedreferenceS. M. Strycharz, A. P. Malanoski, R. M. Snider, H. Yi, D. R. Lovley, L. M. Tender, Energy Environ. Sci. 2011, 4, 896 – 913.en_US
dc.identifier.citedreferenceE. Katz, I. Willner, Electroanalysis 2003, 15, 913 – 947.en_US
dc.identifier.citedreferenceR. Nakamura, F. Kai, A. Okamoto, G. J. Newton, K. Hashimoto, Angew. Chem. 2009, 121, 516 – 519; Angew. Chem. Int. Ed. 2009, 48, 508 – 511.en_US
dc.identifier.citedreferenceS. J. Hagen, J. Hofrichter, A. Szabo, W. A. Eaton, Proc. Natl. Acad. Sci. USA 1996, 93, 11615 – 11617.en_US
dc.identifier.citedreferenceE. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla‐Amoros, F. Beguin, Chem. Phys. Lett. 2002, 361, 35 – 41.en_US
dc.identifier.citedreferenceK. Fic, G. Lota, E. Frackowiak, Electrochim. Acta 2010, 55, 7484 – 7488.en_US
dc.identifier.citedreferenceA. B. Fuertes, G. Lota, T. A. Centeno, E. Frackowiak, Electrochim. Acta 2005, 50, 2799 – 2805.en_US
dc.identifier.citedreferenceY. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537 – 1541.en_US
dc.identifier.citedreferenceE. Barsoukov, J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment and Applications, 2nd ed., Wiley, Hoboken, 2005.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.