Show simple item record

No jacket required – new fungal lineage defies dress code

dc.contributor.authorJames, Timothy Y.en_US
dc.contributor.authorBerbee, Mary L.en_US
dc.date.accessioned2012-03-16T15:54:26Z
dc.date.available2013-04-01T14:17:25Zen_US
dc.date.issued2012-02en_US
dc.identifier.citationJames, Timothy Y.; Berbee, Mary L. (2012). "No jacket required – new fungal lineage defies dress code." BioEssays 34(2): 94-102. <http://hdl.handle.net/2027.42/90101>en_US
dc.identifier.issn0265-9247en_US
dc.identifier.issn1521-1878en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90101
dc.description.abstractAnalyses of environmental DNAs have provided tantalizing evidence for “rozellida” or “cryptomycota”, a clade of mostly undescribed and deeply diverging aquatic fungi. Here, we put cryptomycota into perspective through consideration of Rozella , the only clade member growing in culture. This is timely on account of the publication in Nature of the first images of uncultured cryptomycota from environmental filtrates, where molecular probes revealed non‐motile cyst‐like structures and motile spores, all lacking typical fungal chitinous cell walls. Current studies of Rozella can complement these fragmentary observations from environmental samples. Rozella has a fungal‐specific chitin synthase and its resting sporangia have walls that appear to contain chitin. Cryptomycota, including Rozella , lack a cell wall when absorbing food but like some other fungi, they may have lost their “dinner jacket” through convergence. Rather than evolutionary intermediates, the cryptomycota may be strange, divergent fungi that evolved from an ancestor with a nearly complete suite of classical fungal‐specific characters.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherEvolutionen_US
dc.subject.otherRozellaen_US
dc.subject.otherRozellidaen_US
dc.subject.otherChitin Synthaseen_US
dc.subject.otherCryptomycotaen_US
dc.titleNo jacket required – new fungal lineage defies dress codeen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Botany, University of British Columbia, Vancouver, BC, Canadaen_US
dc.contributor.affiliationotherDepartment of Botany, University of British Columbia, Vancouver, BC, Canada.en_US
dc.identifier.pmid22131166en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90101/1/94_ftp.pdf
dc.identifier.doi10.1002/bies.201100110en_US
dc.identifier.sourceBioEssaysen_US
dc.identifier.citedreferenceKeeling PJ, Fast NM. 2002. Microsporidia: Biology and evolution of highly reduced intracellular parasites. Annu Rev Microbiol 56: 93 – 116.en_US
dc.identifier.citedreferenceGuerriero G, Avino M, Zhou Q, Fugelstad J, et al. 2010. Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti‐oomycete drugs. PLoS Pathog 6: e1001070.en_US
dc.identifier.citedreferenceBland CE, Couch JN. 1985. Structure and development. In Couch JN, Bl CE, eds; The Genus Coelomomyces. Orlando: Academic Press. p 23 – 80.en_US
dc.identifier.citedreferenceHumber RA. 1989. Synopsis of a revised classification for the Entomophthorales (Zygomycotina). Mycotaxon 34: 441 – 60.en_US
dc.identifier.citedreferencePendland JC, Hung SY, Boucias DG. 1993. Evasion of host‐defense by in vivo‐produced protoplast‐like cells of the insect mycopathogen Beauveria bassiana. J Bacteriol 175: 5962 – 9.en_US
dc.identifier.citedreferenceWhisler HC. 1962. Culture and nutrition of Amoebidium parasiticum. Am J Bot 49: 193 – 9.en_US
dc.identifier.citedreferenceMarshall WL, Berbee ML. 2011. Facing unknowns: Living cultures ( Pirum gemmata gen. nov., sp nov., and Abeoforma whisleri, gen. nov., sp nov.) from invertebrate digestive tracts represent an undescribed clade within the unicellular opisthokont lineage Ichthyosporea (Mesomycetozoea). Protist 162: 33 – 57.en_US
dc.identifier.citedreferenceItoh T, Martin W, Nei M. 2002. Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbionts. Proc Natl Acad Sci USA 99: 12944 – 8.en_US
dc.identifier.citedreferenceAmend AS, Seifert KA, Samson R, Bruns TD. 2010. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci USA 107: 13748 – 53.en_US
dc.identifier.citedreferenceFierer N, Liu ZZ, Rodriguez‐Hernandez M, Knight R, et al. 2008. Short‐term temporal variability in airborne bacterial and fungal populations. Appl Environ Microbiol 74: 200 – 7.en_US
dc.identifier.citedreferenceFrohlich‐Nowoisky J, Pickersgill DA, Despres VR, Poschl U. 2009. High diversity of fungi in air particulate matter. Proc Natl Acad Sci USA 106: 12814 – 9.en_US
dc.identifier.citedreferenceJones EBG, Sakayaroj J, Suetrong S, Somrithipol S, et al. 2009. Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Diversity 35: 1 – 187.en_US
dc.identifier.citedreferenceNagahama T, Takahashi E, Nagano Y, Abdel‐Wahab MA, et al. 2011. Molecular evidence that deep‐branching fungi are major fungal components in deep‐sea methane cold‐seep sediments. Environ Microbiol 13: 2359 – 70.en_US
dc.identifier.citedreferenceMohamed DJ, Martiny JBH. 2011. Patterns of fungal diversity and composition along a salinity gradient. Isme J 5: 379 – 88.en_US
dc.identifier.citedreferenceBass D, Howe A, Brown N, Barton H, et al. 2007. Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc Lond Ser B: Biol Sci 274: 3069 – 77.en_US
dc.identifier.citedreferenceLe Calvez T, Burgaud G, Mahe S, Barbier G, et al. 2009. Fungal diversity in deep‐sea hydrothermal ecosystems. Appl Environ Microbiol 75: 6415 – 21.en_US
dc.identifier.citedreferenceLefèvre E, Roussel B, Amblard C, Sime‐Ngando T. 2008. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS One 3: e2324.en_US
dc.identifier.citedreferenceLefranc M, Thenot A, Lepere U, Debroas D. 2005. Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl Environ Microbiol 71: 5935 – 42.en_US
dc.identifier.citedreferenceLepere C, Masquelier S, Mangot JF, Debroas D, et al. 2010. Vertical structure of small eukaryotes in three lakes that differ by their trophic status: A quantitative approach. Isme J 4: 1509 – 19.en_US
dc.identifier.citedreferenceLacey J. 1996. Spore dispersal – its role in ecology and disease: The British contribution to fungal aerobiology. Mycol Res 100: 641 – 60.en_US
dc.identifier.citedreferenceMangot JF, Lepere C, Bouvier C, Debroas D, et al. 2009. Community structure and dynamics of small eukaryotes targeted by new oligonucleotide probes: New insight into the lacustrine microbial food web. Appl Environ Microbiol 75: 6373 – 81.en_US
dc.identifier.citedreferenceSekimoto S, Rochon DA, Long JE, Dee JM, et al. 2011. A multigene phylogeny of Olpidium and its implications for early fungal evolution. BMC Evol Biol, in press.en_US
dc.identifier.citedreferenceLopez P, Casane D, Philippe H. 2002. Heterotachy, an important process of protein evolution. Mol Biol Evol 19: 1 – 7.en_US
dc.identifier.citedreferenceStoeck T, Behnke A, Christen R, Amaral‐Zettler L, et al. 2009. Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. BMC Biol 7: 72.en_US
dc.identifier.citedreferenceKim E, Harrison JW, Sudek S, Jones MDM, et al. 2011. Newly identified and diverse plastid‐bearing branch on the eukaryotic tree of life. Proc Natl Acad Sci USA 108: 1496 – 500.en_US
dc.identifier.citedreferenceMarchler‐Bauer A, Lu SN, Anderson JB, Chitsaz F, et al. 2011. CDD: A Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39: D225 – 9.en_US
dc.identifier.citedreferenceChoquer M, Boccara M, Gonçcalves IR, Soulié M‐C, et al. 2004. Survey of the Botrytis cinerea chitin synthase multigenic family through the analysis of six euascomycetes genomes. Eur J Biochem 271: 2153 – 64.en_US
dc.identifier.citedreferenceEdgar RC. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792 – 7.en_US
dc.identifier.citedreferenceFortin JA, Becard G, Declerck S, Dalpe Y, et al. 2002. Arbuscular mycorrhiza on root‐organ cultures. Can J Bot/Rev Can Bot 80: 1 – 20.en_US
dc.identifier.citedreferenceHibbett DS, Ohman A, Glotzer D, Nuhn M, et al. 2011. Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol Rev 25: 38 – 47.en_US
dc.identifier.citedreferenceStajich JE, Berbee ML, Blackwell M, Hibbett DS, et al. 2009. The fungi. Curr Biol 19: R840 – 5.en_US
dc.identifier.citedreferenceSmith ML, Bruhn JN, Anderson JB. 1992. The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356: 428 – 31.en_US
dc.identifier.citedreferenceLutzoni F, Kauff F, Cox CJ, McLaughlin D, et al. 2004. Assembling the fungal tree of life: Progress, classification, and evolution of subcellular traits. Am J Bot 91: 1446 – 80.en_US
dc.identifier.citedreferenceJumpponen A, Jones KL. 2009. Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184: 438 – 48.en_US
dc.identifier.citedreferenceO'Brien HE, Parrent JL, Jackson JA, Moncalvo JM, et al. 2005. Fungal community analysis by large‐scale sequencing of environmental samples. Appl Environ Microbiol 71: 5544 – 50.en_US
dc.identifier.citedreferencePorter TM, Skillman JE, Moncalvo JM. 2008. Fruiting body and soil rDNA sampling detects complementary assemblage of Agaricomycotina (Basidiomycota, Fungi) in a hemlock‐dominated forest plot in southern Ontario. Mol Ecol 17: 3037 – 50.en_US
dc.identifier.citedreferencePorter TM, Schadt CW, Rizvi L, Martin AP, et al. 2008. Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life. Mol Phylogen Evol 46: 635 – 44.en_US
dc.identifier.citedreferenceSchadt CW, Martin AP, Lipson DA, Schmidt SK. 2003. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301: 1359 – 61.en_US
dc.identifier.citedreferenceVandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, et al. 2002. Evolution – extensive fungal diversity in plant roots. Science 295: 2051.en_US
dc.identifier.citedreferenceTakishita K, Miyake H, Kawato M, Maruyama T. 2005. Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small‐subunit rDNA phylogeny. Extremophiles 9: 185 – 96.en_US
dc.identifier.citedreferenceJones MDM, Forn I, Gadelha C, Egan MJ, et al. 2011. Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474: 200 – 3.en_US
dc.identifier.citedreferenceSteenkamp ET, Wright J, Baldauf SL. 2005. The protistan origins of animals and fungi. Mol Biol Evol 23: 93 – 106.en_US
dc.identifier.citedreferencevan Hannen EJ, Mooij WM, van Agterveld MP, Gons HJ, et al. 1999. Detritus‐dependent development of the microbial community in an experimental system: Qualitative analysis by denaturing gradient gel electrophoresis. Appl Environ Microbiol 65: 2478 – 84.en_US
dc.identifier.citedreferenceAmaral‐Zettler LA, Gomez F, Zettler E, Keenan BG, et al. 2002. Eukaryotic diversity in Spain's River of Fire. Nature 417: 137.en_US
dc.identifier.citedreferenceSlapeta J, Moreira D, Lopez‐Garcia P. 2005. The extent of protist diversity: Insights from molecular ecology of freshwater eukaryotes. Proc R Soc Lond Ser B: Biol Sci 272: 2073 – 81.en_US
dc.identifier.citedreferenceLefèvre E, Bardot C, Noel C, Carrias JF, et al. 2007. Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: Evidence from a molecular diversity study in a deep meromictic lake. Environ Microbiol 9: 61 – 71.en_US
dc.identifier.citedreferenceLesaulnier C, Papamichail D, McCorkle S, Ollivier B, et al. 2008. Elevated atmospheric CO 2 affects soil microbial diversity associated with trembling aspen. Environ Microbiol 10: 926 – 41.en_US
dc.identifier.citedreferenceDawson SC, Pace NR. 2002. Novel kingdom‐level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci USA 99: 8324 – 9.en_US
dc.identifier.citedreferenceNagano Y, Nagahama T, Hatada Y, Nunoura T, et al. 2010. Fungal diversity in deep‐sea sediments – the presence of novel fungal groups. Fungal Ecol 3: 316 – 25.en_US
dc.identifier.citedreferenceLara E, Moreira D, Lopez‐Garcia P. 2010. The environmental clade LKM11 and Rozella form the deepest branching clade of fungi. Protist 161: 116 – 21.en_US
dc.identifier.citedreferenceHeld AA. 1981. Rozella and Rozellopsis: Naked endoparasitic fungi which dress up as their hosts. Bot Rev 47: 451 – 15.en_US
dc.identifier.citedreferenceBarr DJS. 1980. An outline for the reclassification of the Chytridiales, and for a new order, the Spizellomycetales. Can J Bot/Rev Can Bot 58: 2380 – 94.en_US
dc.identifier.citedreferenceJames TY, Kauff F, Schoch C, Matheny PB, et al. 2006. Reconstructing the early evolution of the fungi using a six gene phylogeny. Nature 443: 818 – 22.en_US
dc.identifier.citedreferenceSparrow FK, Paterson RA, Johns RM. 1965. Additions to the phycomycete flora of the Douglas Lake region. V. New or interesting fungi. Pap Mich Acad Sci Arts Lett 50: 115 – 23.en_US
dc.identifier.citedreferenceHeld AA. 1974. Attraction and attachment of zoospores of parasitic chytrid Rozella allomycis in response to host‐dependent factors. Arch Microbiol 95: 97 – 114.en_US
dc.identifier.citedreferenceKarling JS. 1942. Parasitism among the chytrids. Am J Bot 29: 24 – 35.en_US
dc.identifier.citedreferenceShanor L. 1942. A new Rozella of the polysporangiate series. J Elisha Mitch Sci S 58: 99 – 101.en_US
dc.identifier.citedreferenceWolf FT. 1941. A contribution to the life history and geographic distribution of the genus Allomyces. Mycologia 33: 158 – 73.en_US
dc.identifier.citedreferenceHeld AA. 1973. Encystment and germination of the parasitic chytrid Rozella allomycis on host hyphae. Can J Bot/Rev Can Bot 51: 1825 – 35.en_US
dc.identifier.citedreferenceHeld AA. 1980. Development of Rozella in Allomyces – a single zoospore produces numerous zoosporangia and resistant sporangia. Can J Bot/Rev Can Bot 58: 959 – 79.en_US
dc.identifier.citedreferencePowell MJ. 1984. Fine structure of the unwalled thallus of Rozella polyphagi in its host Polyphagus euglenae. Mycologia 76: 1039 – 48.en_US
dc.identifier.citedreferenceAronson JM, Machlis L. 1959. The chemical composition of the hyphal walls of the fungus Allomyces. Am J Bot 46: 292 – 300.en_US
dc.identifier.citedreferenceFranzen C. 2004. Microsporidia: How can they invade other cells ? Trends Parasitol 20: 275 – 9.en_US
dc.identifier.citedreferenceNot F, Simon N, Biegala IC, Vaulot D. 2002. Application of fluorescent in situ hybridization coupled with tyramide signal amplification (FISH‐TSA) to assess eukaryotic picoplankton composition. Aquat Microb Ecol 28: 157 – 66.en_US
dc.identifier.citedreferenceHibbett DS, Binder M, Bischoff JF, Blackwell M, et al. 2007. A higher‐level phylogenetic classification of the Fungi. Mycol Res 111: 509 – 47.en_US
dc.identifier.citedreferenceKirk PM, Cannon PF, Minter DW, Stalpers JA. 2008. Ainsworth & Bisby's Dictionary of the Fungi. Wallingford, UK: CAB International.en_US
dc.identifier.citedreferenceBowman SM, Free SJ. 2006. The structure and synthesis of the fungal cell wall. BioEssays 28: 799 – 808.en_US
dc.identifier.citedreferenceRuiz‐Trillo I, Burger G, Holland PWH, King N, et al. 2007. The origins of multicellularity: A multi‐taxon genome initiative. Trends Genet 23: 113 – 8.en_US
dc.identifier.citedreferenceQu MB, Liu TA, Yang J, Yang Q. 2011. The gene, expression pattern and subcellular localization of chitin synthase B from the insect Ostrinia furnacalis. Biochem Biophys Res Commun 404: 302 – 7.en_US
dc.identifier.citedreferenceJing W, DeAngelis PL. 2003. Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurellamultocida. Glycobiology 13: 661 – 71.en_US
dc.identifier.citedreferenceLehninger AL. 1975. Biochemistry. 2nd edition. New York: Worth Publishers.en_US
dc.identifier.citedreferenceRuiz‐Herrera J, González‐Prieto JM, Ruiz‐Medrano R. 2002. Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi. FEMS Yeast Res 1: 247 – 56.en_US
dc.identifier.citedreferenceMunro CA, Gow NAR. 2001. Chitin synthesis in human pathogenic fungi. Med Mycol 39: 41 – 53.en_US
dc.identifier.citedreferenceBulawa CE. 1993. Genetics and molecular‐biology of chitin synthesis in fungi. Annu Rev Microbiol 47: 505 – 34.en_US
dc.identifier.citedreferenceRoncero C. 2002. The genetic complexity of chitin synthesis in fungi. Curr Genet 41: 367 – 78.en_US
dc.identifier.citedreferenceRuiz‐Herrera J, Ortiz‐Castellanos L. 2010. Analysis of the phylogenetic relationships and evolution of the cell walls from yeasts and fungi. FEMS Yeast Res 10: 225 – 43.en_US
dc.identifier.citedreferenceTsuizaki M, Takeshita N, Ohta A, Horiuchi H. 2009. Myosin motor‐like domain of the class VI chitin synthase Csmb is essential to its functions in Aspergillus nidulans. Biosci Biotechnol Biochem 73: 1163 – 7.en_US
dc.identifier.citedreferenceAbramczyk D, Park C, Szaniszlo PJ. 2009. Cytolocalization of the class V chitin synthase in the yeast, hyphal and sclerotic morphotypes of Wangiella ( Exophiala ) dermatitidis. Fungal Genet Biol 46: 28 – 41.en_US
dc.identifier.citedreferenceTreitschke S, Doehlemann G, Schuster M, Steinberg G. 2010. The myosin motor domain of fungal chitin synthase v is dispensable for vesicle motility but required for virulence of the maize pathogen Ustilago maydis. Plant Cell 22: 2476 – 94.en_US
dc.identifier.citedreferenceLenardon MD, Munro CA, Gow NAR. 2010. Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 13: 416 – 23.en_US
dc.identifier.citedreferenceLeal‐Morales CA, Gay L, Fevre M, Bartnicki‐Garcia S. 1997. The properties and localization of Saprolegnia monoica chitin synthase differ from those of other fungi. Microbiology 143: 2473 – 83.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.