Show simple item record

Epithelial‐specific knockout of the Rac1 gene leads to enamel defects

dc.contributor.authorHuang, Zhanen_US
dc.contributor.authorKim, Jieunen_US
dc.contributor.authorLacruz, Rodrigo S.en_US
dc.contributor.authorBringas Jr, Pabloen_US
dc.contributor.authorGlogauer, Michaelen_US
dc.contributor.authorBromage, Timothy G.en_US
dc.contributor.authorKaartinen, Vesa M.en_US
dc.contributor.authorSnead, Malcolm L.en_US
dc.date.accessioned2012-03-16T15:55:12Z
dc.date.available2013-02-01T20:26:22Zen_US
dc.date.issued2011-12en_US
dc.identifier.citationHuang, Zhan; Kim, Jieun; Lacruz, Rodrigo S.; Bringas Jr, Pablo; Glogauer, Michael; Bromage, Timothy G.; Kaartinen, Vesa M.; Snead, Malcolm L. (2011). "Epithelial‐specific knockout of the Rac1 gene leads to enamel defects." European Journal of Oral Sciences 119. <http://hdl.handle.net/2027.42/90135>en_US
dc.identifier.issn0909-8836en_US
dc.identifier.issn1600-0722en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90135
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCell Adhesionen_US
dc.subject.otherEpithelial Cellen_US
dc.subject.otherAmeloblasten_US
dc.subject.otherRac1en_US
dc.subject.otherExtracellular Matrixen_US
dc.titleEpithelial‐specific knockout of the Rac1 gene leads to enamel defectsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelOtolaryngologyen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherNew York University College of Dentistry, New York, NY, USAen_US
dc.contributor.affiliationotherMatrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canadaen_US
dc.contributor.affiliationotherThe Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90135/1/j.1600-0722.2011.00904.x.pdf
dc.identifier.doi10.1111/j.1600-0722.2011.00904.xen_US
dc.identifier.sourceEuropean Journal of Oral Sciencesen_US
dc.identifier.citedreferenceWright JT. The molecular etiologies and associated phenotypes of amelogenesis imperfecta. Am J Med Genet A 2006; 140: 2547 – 2555.en_US
dc.identifier.citedreferenceHuang Z, Sargeant TD, Hulvat JF, Mata A, Bringas P Jr, Koh CY, Stupp SI, Snead ML. Bioactive nanofibers instruct cells to proliferate and differentiate during enamel regeneration. J Bone Miner Res 2008; 23: 19950 – 20060.en_US
dc.identifier.citedreferenceFilipenko NR, Attwell S, Roskelley C, Dedhar S. Integrin‐linked kinase activity regulates Rac‐ and Cdc42‐mediated actin cytoskeleton reorganization via alpha‐PIX. Oncogene 2005; 24: 5837 – 5849.en_US
dc.identifier.citedreferenceDeMali KA, Wennerberg K, Burridge K. Integrin signaling to the actin cytoskeleton. Curr Opin Cell Biol 2003; 15: 572 – 582.en_US
dc.identifier.citedreferenceBoyde A. Correlation of ameloblast size with enamel prism pattern: use of scanning electron microscope to make surface area measurements. Z Zellforsch Mikrosk Anat 1969; 93: 583 – 593.en_US
dc.identifier.citedreferenceReith EJ, Boyde A. The arrangement of ameloblasts on the surface of maturing enamel of the rat incisor tooth. J Anat 1981; 133: 381 – 388.en_US
dc.identifier.citedreferenceNishikawa S, Fujiwara K, Kitamura H. Formation of the tooth enamel rod pattern and the cytoskeletal organization in secretory ameloblasts of the rat incisor. Eur J Cell Biol 1988; 47: 222 – 232.en_US
dc.identifier.citedreferenceCutroneo G, Anastasi G, Donadio N, Favaloro A, Micali A, Nastro Siniscalchi R, Santoro G, Trimarchi F. Actin‐associated proteins in ameloblast differentiation. Cells Tissues Organs 2002; 171: 128 – 134.en_US
dc.identifier.citedreferenceGlogauer M, Marchal CC, Zhu F, Worku A, Clausen BE, Foerster I, Marks P, Downey GP, Dinauer M, Kwiatkowski DJ. Rac1 deletion in mouse neutrophils has selective effects on neutrophil functions. J Immunol 2003; 170: 5652 – 5657.en_US
dc.identifier.citedreferenceXu Y, Zhou YL, Gonzalez FJ, Snead ML. CCAAT/enhancer‐binding protein delta (C/EBPdelta) maintains amelogenin expression in the absence of C/EBPalpha in vivo. J Biol Chem 2007; 282: 29882 – 29889.en_US
dc.identifier.citedreferenceSnead ML. Enamel biology logodaedaly: getting to the root of the problem, or “who’s on first...”. J Bone Miner Res 1996; 11: 899 – 904.en_US
dc.identifier.citedreferenceKrebsbach PH, Lee SK, Matsuki Y, Kozak CA, Yamada KM, Yamada Y. Full‐length sequence, localization, and chromosomal mapping of ameloblastin. A novel tooth‐specific gene. J Biol Chem 1996; 271: 4431 – 4435.en_US
dc.identifier.citedreferenceCouwenhoven RI, Luo W, Snead ML. Co‐localization of EGF transcripts and peptides by combined immunohistochemistry and in situ hybridization. J Histochem Cytochem 1990; 38: 1853 – 1857.en_US
dc.identifier.citedreferenceChrostek A, Wu X, Quondamatteo F, Hu R, Sanecka A, Niemann C, Langbein L, Haase I, Brakebusch C. Rac1 is crucial for hair follicle integrity but is not essential for maintenance of the epidermis. Mol Cell Biol 2006; 26: 6957 – 6970.en_US
dc.identifier.citedreferenceCastilho RM, Squarize CH, Patel V, Millar SE, Zheng Y, Molinolo A, Gutkind JS. Requirement of Rac1 distinguishes follicular from interfollicular epithelial stem cells. Oncogene 2007; 26: 5078 – 5085.en_US
dc.identifier.citedreferencePaine ML, Snead ML. Tooth developmental biology: disruptions to enamel‐matrix assembly and its impact on biomineralization. Orthod Craniofac Res 2005; 8: 239 – 251.en_US
dc.identifier.citedreferenceSnead ML. Amelogenin protein exhibits a modular design: implications for form and function. Connect Tissue Res 2003; 44 ( Suppl 1 ): 47 – 51.en_US
dc.identifier.citedreferenceRajpar MH, Harley K, Laing C, Davies RM, Dixon MJ. Mutation of the gene encoding the enamel‐specific protein, enamelin, causes autosomal‐dominant amelogenesis imperfecta. Hum Mol Genet 2001; 10: 1673 – 1677.en_US
dc.identifier.citedreferenceHart PS, Hart TC, Michalec MD, Ryu OH, Simmons D, Hong S, Wright JT. Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. J Med Genet 2004; 41: 545 – 549.en_US
dc.identifier.citedreferenceHart PS, Aldred MJ, Crawford PJ, Wright NJ, Hart TC, Wright JT. Amelogenesis imperfecta phenotype‐genotype correlations with two amelogenin gene mutations. Arch Oral Biol 2002; 47: 261 – 265.en_US
dc.identifier.citedreferenceBiz MT, Marques MR, Crema VO, Moriscot AS, Dos Santos MF. GTPases RhoA and Rac1 are important for amelogenin and DSPP expression during differentiation of ameloblasts and odontoblasts. Cell Tissue Res 2010; 340: 459 – 470.en_US
dc.identifier.citedreferenceLi Y, Pugach MK, Kuehl MA, Peng L, Bouchard J, Hwang SY, Gibson CW. Dental enamel structure is altered by expression of dominant negative RhoA in ameloblasts. Cells Tissues Organs 2011; 194: 227 – 231.en_US
dc.identifier.citedreferenceFukumoto S, Kiba T, Hall B, Iehara N, Nakamura T, Longenecker G, Krebsbach PH, Nanci A, Kulkarni AB, Yamada Y. Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol 2004; 167: 973 – 983.en_US
dc.identifier.citedreferenceGibson CW, Collier PM, Yuan ZA, Chen E, Adeleke‐Stainback P, Lim J, Rosenbloom J. Regulation of amelogenin gene expression. Ciba Found Symp 1997; 205: 187 – 197; discussion 197–189.en_US
dc.identifier.citedreferenceGibson CW, Yuan ZA, Hall B, Longenecker G, Chen E, Thyagarajan T, Sreenath T, Wright JT, Decker S, Piddington R, Harrison G, Kulkarni AB. Amelogenin‐deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem 2001; 276: 31871 – 31875.en_US
dc.identifier.citedreferenceHatakeyama J, Fukumoto S, Nakamura T, Haruyama N, Suzuki S, Hatakeyama Y, Shum L, Gibson CW, Yamada Y, Kulkarni AB. Synergistic roles of amelogenin and ameloblastin. J Dent Res 2009; 88: 318 – 322.en_US
dc.identifier.citedreferenceHunter GK, Curtis HA, Grynpas MD, Simmer JP, Fincham AG. Effects of recombinant amelogenin on hydroxyapatite formation in vitro. Calcif Tissue Int 1999; 65: 226 – 231.en_US
dc.identifier.citedreferenceFukumoto S, Yamada A, Nonaka K, Yamada Y. Essential roles of ameloblastin in maintaining ameloblast differentiation and enamel formation. Cells Tissues Organs 2005; 181: 189 – 195.en_US
dc.identifier.citedreferenceLi Y, Decker S, Yuan ZA, Denbesten PK, Aragon MA, Jordan‐Sciutto K, Abrams WR, Huh J, McDonald C, Chen E, MacDougall M, Gibson CW. Effects of sodium fluoride on the actin cytoskeleton of murine ameloblasts. Arch Oral Biol 2005; 50: 681 – 688.en_US
dc.identifier.citedreferenceAlbertinazzi C, Cattelino A, De Curtis I. Rac GTPases localize at sites of actin reorganization during dynamic remodeling of the cytoskeleton of normal embryonic fibroblasts. J Cell Sci 1999; 112 ( Pt 21 ): 3821 – 3831.en_US
dc.identifier.citedreferenceFukumoto S, Miner JH, Ida H, Fukumoto E, Yuasa K, Miyazaki H, Hoffman MP, Yamada Y. Laminin alpha5 is required for dental epithelium growth and polarity and the development of tooth bud and shape. J Biol Chem 2006; 281: 5008 – 5016.en_US
dc.identifier.citedreferenceThesleff I. The genetic basis of tooth development and dental defects. Am J Med Genet A 2006; 140: 2530 – 2535.en_US
dc.identifier.citedreferenceJernvall J, Jung HS. Genotype, phenotype, and developmental biology of molar tooth characters. Am J Phys Anthropol 2000; 113 ( Suppl 31 ): 171 – 190.en_US
dc.identifier.citedreferenceFincham AG, Moradian‐Oldak J, Simmer JP. The structural biology of the developing dental enamel matrix. J Struct Biol 1999; 126: 270 – 299.en_US
dc.identifier.citedreferenceSugihara K, Nakatsuji N, Nakamura K, Nakao K, Hashimoto R, Otani H, Sakagami H, Kondo H, Nozawa S, Aiba A, Katsuki M. Rac1 is required for the formation of three germ layers during gastrulation. Oncogene 1998; 17: 3427 – 3433.en_US
dc.identifier.citedreferenceNoritake J, Fukata M, Sato K, Nakagawa M, Watanabe T, Izumi N, Wang S, Fukata Y, Kaibuchi K. Positive role of IQGAP1, an effector of Rac1, in actin‐meshwork formation at sites of cell‐cell contact. Mol Biol Cell 2004; 15: 1065 – 1076.en_US
dc.identifier.citedreferenceThomas PS, Kim J, Nunez S, Glogauer M, Kaartinen V. Neural crest cell‐specific deletion of Rac1 results in defective cell–matrix interactions and severe craniofacial and cardiovascular malformations. Dev Biol 2010; 340: 613 – 625.en_US
dc.identifier.citedreferenceVidali L, Chen F, Cicchetti G, Ohta Y, Kwiatkowski DJ. Rac1‐null mouse embryonic fibroblasts are motile and respond to platelet‐derived growth factor. Mol Biol Cell 2006; 17: 2377 – 2390.en_US
dc.identifier.citedreferenceLiu S, Kapoor M, Leask A. Rac1 expression by fibroblasts is required for tissue repair in vivo. Am J Pathol 2009; 174: 1847 – 1856.en_US
dc.identifier.citedreferenceCerny R. [Mineralized dental enamel matrix proteins]. Bratisl Lek Listy 2000; 101: 288 – 293.en_US
dc.identifier.citedreferenceBei M, Stowell S, Maas R. Msx2 controls ameloblast terminal differentiation. Dev Dyn 2004; 231: 758 – 765.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.