Show simple item record

Potential for promoting recurrent laryngeal nerve regeneration by remote delivery of viral gene therapy

dc.contributor.authorRubin, Adam D.en_US
dc.contributor.authorHogikyan, Norman D.en_US
dc.contributor.authorOh, Alexen_US
dc.contributor.authorFeldman, Eva L.en_US
dc.date.accessioned2012-03-16T15:56:26Z
dc.date.available2013-04-01T14:17:26Zen_US
dc.date.issued2012-02en_US
dc.identifier.citationRubin, Adam D.; Hogikyan, Norman D.; Oh, Alex; Feldman, Eva L. (2012). "Potential for promoting recurrent laryngeal nerve regeneration by remote delivery of viral gene therapy ." The Laryngoscope 122(2): 349-355. <http://hdl.handle.net/2027.42/90195>en_US
dc.identifier.issn0023-852Xen_US
dc.identifier.issn1531-4995en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90195
dc.description.abstractObjectives/Hypothesis: The aims of this study were to demonstrate the ability to enhance nerve regeneration by remote delivery of a viral vector to the crushed recurrent laryngeal nerve (RLN), to demonstrate the usefulness of a crushed RLN model to test the efficacy of viral gene therapy, and to discuss future potential applications of this approach. Study Design: Animal study. Methods: Adult Sprague‐Dawley rats were assigned to two groups. In the experimental group, an adeno‐associated viral (AAV) vector carrying a zinc‐finger transcription factor, which stimulates endogenous insulinlike growth factor I production (AAV2‐TO‐6876vp16), was injected into the crushed RLN. In the control group, an AAV vector carrying the gene for green fluorescent protein was injected into the crushed RLN. Unilateral RLN paralysis was confirmed endoscopically. At 1 week, laryngeal endoscopies were repeated and recorded. Larynges were cryosectioned in 15‐μm sections and processed for acetylcholine histochemistry (motor endplates) followed by neurofilament immunoperoxidase (nerve fibers). Percentage nerve‐endplate contact (PEC) was determined and compared. Vocal fold motion was evaluated by blinded reviewers using a visual analogue scale (VAS). Results: The difference between PEC on the crushed and uncrushed sides was statistically less in the experimental group (0.54 ± 0.18 vs. 0.30 ± 0.26, P = .0006). The VAS score at 1 week was significantly better in the experimental group ( P = .002). Conclusions: AAV2‐TO‐6876vp16 demonstrated a neurotrophic effect when injected into the crushed RLN. The RLN offers a conduit for viral gene therapy to the brainstem that could be useful for the treatment of RLN injury or bulbar motor neuron disease.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherViral Vectorsen_US
dc.subject.otherReinnervationen_US
dc.subject.otherNeurologic Diseaseen_US
dc.subject.otherAmyotrophic Lateral Sclerosisen_US
dc.subject.otherAdeno‐Associated Virusen_US
dc.subject.otherDysphoniaen_US
dc.subject.otherGene Therapyen_US
dc.subject.otherVocal Fold Paralysisen_US
dc.titlePotential for promoting recurrent laryngeal nerve regeneration by remote delivery of viral gene therapyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelOtolaryngologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Neurology, University of Michigan, Ann Arbor, Michigan, U.S.A.en_US
dc.contributor.affiliationumLakeshore Professional Voice Center, St. Clair Shores, Michigan, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumthe Department of Otorhinolaryngology, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherLakeshore Professional Voice Center, Lakeshore Ear, Nose and Throat Center, 21000 E. 12 Mile Rd., Suite 111, St. Clair Shores, MI 48081en_US
dc.identifier.pmid22241608en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90195/1/22436_ftp.pdf
dc.identifier.doi10.1002/lary.22436en_US
dc.identifier.sourceThe Laryngoscopeen_US
dc.identifier.citedreferenceDaya S, Berns KI. Gene therapy using adeno‐associated virus vectors. Clin Microbiol Rev 2008; 21: 583 – 593.en_US
dc.identifier.citedreferenceLeinninger GM, Feldman EL. Insulin‐like growth factors in the treatment of neurological disease. Endocr Dev 2005; 9: 135 – 159.en_US
dc.identifier.citedreferenceSullivan KA, Kim B, Feldman EL. Insulin‐like growth factors in the peripheral nervous system. Endocrinology 2008; 149: 5963 – 5971.en_US
dc.identifier.citedreferenceKwon BK, Liu J, Lam C, et al. Brain‐derived neurotrophic factor gene transfer with adeno‐associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration‐associated gene expression after acute cervical spinal cord injury. Spine 2007; 32: 1164 – 1173.en_US
dc.identifier.citedreferenceHouweling DA, Lankhorst AJ, Gispen WH, Bar PR, Joosten EA. Collagen containing neurotrophin‐3 (NT‐3) attracts regrowing injured corticospinal axons in the adult rat spinal cord and promotes partial functional recovery. Exp Neurol 1998; 153: 49 – 59.en_US
dc.identifier.citedreferenceBloch J, Fine EG, Bouche N, Zurn AD, Aebischer P. Nerve growth factor‐ and neurotrophin‐3‐releasing guidance channels promote regeneration of the transected rat dorsal root. Exp Neurol 2001; 172: 425 – 432.en_US
dc.identifier.citedreferenceKirik D, Rosenblad C, Bjorklund A, Mandel RJ. Long‐term rAAV‐mediated gene transfer of GDNF in the rat Parkinson's model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci 2000; 20: 4686 – 4700.en_US
dc.identifier.citedreferenceSondell M, Sundler F, Kanje M. Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk‐1 receptor. Eur J Neurosci 2000; 12: 4243 – 4254.en_US
dc.identifier.citedreferenceSkold MK, Kanje M. Vascular endothelial growth factor in central nervous system injuries ‐ a vascular growth factor getting nervous? Curr Neurovasc Res 2008; 5: 246 – 259.en_US
dc.identifier.citedreferenceVergani L, Di Giulio AM, Losa M, Rossoni G, Muller EE, Gorio A. Systemic administration of insulin‐like growth factor decreases motor neuron cell death and promotes muscle reinnervation. J Neurosci Res 1998; 54: 840 – 847.en_US
dc.identifier.citedreferenceContreras PC, Steffler C, Yu E, Callison K, Stong D, Vaught JL. Systemic administration of rhIGF‐I enhanced regeneration after sciatic nerve crush in mice. J Pharmacol Exp Ther 1995; 274: 1443 – 1449.en_US
dc.identifier.citedreferenceCheng HL, Randolph A, Yee D, Delafontaine P, Tennekoon G, Feldman EL. Characterization of insulin‐like growth factor‐I and its receptor and binding proteins in transected nerves and cultured Schwann cells. J Neurochem 1996; 66: 525 – 536.en_US
dc.identifier.citedreferencePu SF, Zhuang HX, Ishii DN. Differential spatio‐temporal expression of the insulin‐like growth factor genes in regenerating sciatic nerve. Brain Res Mol Brain Res 1995; 34: 18 – 28.en_US
dc.identifier.citedreferenceWuarin L, Guertin DM, Ishii DN. Early reduction in insulin‐like growth factor gene expression in diabetic nerve. Exp Neurol 1994; 130: 106 – 114.en_US
dc.identifier.citedreferenceShiotani A, O'Malley BW Jr, Coleman ME, Flint PW. Human insulinlike growth factor 1 gene transfer into paralyzed rat larynx: single vs multiple injection. Arch Otolaryngol Head Neck Surg 1999; 125: 555 – 560.en_US
dc.identifier.citedreferenceJamieson AC, Miller JC, Pabo CO. Drug discovery with engineered zinc‐finger proteins. Nat Rev Drug Discov 2003; 2: 361 – 368.en_US
dc.identifier.citedreferenceReik A, Zhou Y, Collingwood TN, et al. Enhanced protein production by engineered zinc finger proteins. Biotechnol Bioeng 2007; 97: 1180 – 1189.en_US
dc.identifier.citedreferenceSnowden A, Zhang L, Urnov F, et al. Repression of vascular endothelial growth factor A in glioblastoma cells using engineered zinc finger transcription factors. Cancer Research 2003; 63: 8968 – 8976.en_US
dc.identifier.citedreferenceZhang L, Spratt SK, Liu Q, et al. Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J Biol Chem 2000; 275: 33850 – 33860.en_US
dc.identifier.citedreferenceLiu PQ, Rebar EJ, Zhang L, et al. Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J Biol Chem 2001; 276: 11323 – 11334.en_US
dc.identifier.citedreferenceKlug A. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q Rev Biophys 2010; 43: 1 – 21.en_US
dc.identifier.citedreferenceKlug A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 2010; 79: 213 – 231.en_US
dc.identifier.citedreferenceTurner DE, Noordmans AJ, Feldman EL, Boulis NM. Remote adenoviral gene delivery to the spinal cord: contralateral delivery and reinjection. Neurosurgery 2001; 48: 1309 – 1316; discussion, 1309 – 1316.en_US
dc.identifier.citedreferenceFederici T, Liu JK, Teng Q, Yang J, Boulis NM. A means for targeting therapeutics to peripheral nervous system neurons with axonal damage. Neurosurgery 2007; 60: 911 – 918; discussion, 911 – 918.en_US
dc.identifier.citedreferencePestronk A, Drachman DB. A new stain for quantitative measurement of sprouting at neuromuscular junctions. Muscle Nerve 1978; 1: 70 – 74.en_US
dc.identifier.citedreferenceFung K, Hogikyan ND, Heavner SB, Ekbom D, Feldman EL. Development and characterisation of an experimental recurrent laryngeal nerve injury model for the study of viral gene therapy. J Laryngol Otol 2008; 122: 500 – 505.en_US
dc.identifier.citedreferenceHogikyan ND, Johns MM, Kileny PR, Urbanchek M, Carroll WR, Kuzon WM Jr. Motion‐specific laryngeal reinnervation using muscle‐nerve‐muscle neurotization. Ann Otol Rhinol Laryngol 2001; 110: 801 – 810.en_US
dc.identifier.citedreferenceTanase D, Teng Q, Krishnaney AA, Liu JK, Garrity‐Moses ME, Boulis NM. Cervical spinal cord delivery of a rabies G protein pseudotyped lentiviral vector in the SOD‐1 transgenic mouse. J Neurosurg Spine 2004; 1: 128 – 136.en_US
dc.identifier.citedreferenceBeardsley T. Gene therapy setback. Sci Am 2000; 282: 36 – 37.en_US
dc.identifier.citedreferenceFederici T, Boulis N. Gene therapy for peripheral nervous system diseases. Curr Gene Ther 2007; 7: 239 – 248.en_US
dc.identifier.citedreferenceRubin A, Mobley B, Hogikyan N, et al. Delivery of an adenoviral vector to the crushed recurrent laryngeal nerve. Laryngoscope 2003; 113: 985 – 989.en_US
dc.identifier.citedreferenceRubin AD, Hogikyan ND, Sullivan K, Boulis N, Feldman EL. Remote delivery of rAAV‐GFP to the rat brainstem through the recurrent laryngeal nerve. Laryngoscope 2001; 111: 2041 – 2045.en_US
dc.identifier.citedreferenceFranz CK, Federici T, Yang J, et al. Intraspinal cord delivery of IGF‐I mediated by adeno‐associated virus 2 is neuroprotective in a rat model of familial ALS. Neurobiol Dis 2009; 33: 473 – 481.en_US
dc.identifier.citedreferenceSakowski SA, Schuyler AD, Feldman EL. Insulin‐like growth factor‐I for the treatment of amyotrophic lateral sclerosis. Amyotroh Lateral Scler 2009; 10: 63 – 73.en_US
dc.identifier.citedreferenceVincent AM, Sakowski SA, Schuyler A, Feldman EL. Strategic approaches to developing drug treatments for ALS. Drug Discov Today 2008; 13: 67 – 72.en_US
dc.identifier.citedreferenceBoulis NM, Noordmans AJ, Song DK, et al. Adeno‐associated viral vector gene expression in the adult rat spinal cord following remote vector delivery. Neurobiol Dis 2003; 14: 535 – 541.en_US
dc.identifier.citedreferenceUchida K, Nakajima H, Inukai T, et al. Adenovirus‐mediated retrograde transfer of neurotrophin‐3 gene enhances survival of anterior horn neurons of twy/twy mice with chronic mechanical compression of the spinal cord. J Neurosci Res 2008; 86: 1789 – 1800.en_US
dc.identifier.citedreferenceNakajima H, Uchida K, Kobayashi S, et al. Target muscles for retrograde gene delivery to specific spinal cord segments. Neurosci Lett 2008; 435: 1 – 6.en_US
dc.identifier.citedreferenceXu K, Uchida K, Nakajima H, Kobayashi S, Baba H. Targeted retrograde transfection of adenovirus vector carrying brain‐derived neurotrophic factor gene prevents loss of mouse (twy/twy) anterior horn neurons in vivo sustaining mechanical compression. Spine 2006; 31: 1867 – 1874.en_US
dc.identifier.citedreferenceBoulis NM, Turner DE, Dice JA, Bhatia V, Feldman EL. Characterization of adenoviral gene expression in spinal cord after remote vector delivery. Neurosurgery 1999; 45: 131 – 137; discussion 137 – 138.en_US
dc.identifier.citedreferencePeel AL, Klein RL. Adeno‐associated virus vectors: activity and applications in the CNS. J Neurosci Methods 2000; 98: 95 – 104.en_US
dc.identifier.citedreferenceRonsyn MW, Berneman ZN, Van Tendeloo VF, Jorens PG, Ponsaerts P. Can cell therapy heal a spinal cord injury? Spinal Cord 2008; 46: 532 – 539.en_US
dc.identifier.citedreferenceBracken MB, Shepard MJ, Collins WF, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal‐cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 1990; 322: 1405 – 1411.en_US
dc.identifier.citedreferenceEngstrom M, Berg T, Stjernquist‐Desatnik A, et al. Prednisolone and valaciclovir in Bell's palsy: a randomised, double‐blind, placebo‐controlled, multicentre trial. Lancet Neurol 2008; 7: 993 – 1000.en_US
dc.identifier.citedreferenceShemirani NL, Schmidt M, Friedland DR. Sudden sensorineural hearing loss: an evaluation of treatment and management approaches by referring physicians. Otolaryngol Head Neck Surg 2009; 140: 86 – 91.en_US
dc.identifier.citedreferenceTurk‐Boru U, Kocer A, Bilge C. The efficacy of steroids in idiopathic facial nerve paralysis: an open, randomized, prospective controlled study. Kulak Burun Bogaz Ihtis Derg 2005; 14: 62 – 66.en_US
dc.identifier.citedreferenceFinger RP, Gostian AO. Idiopathic sudden hearing loss: contradictory clinical evidence, placebo effects and high spontaneous recovery rate–where do we stand in assessing treatment outcomes? Acta Otolaryngol 2006; 126: 1124 – 1127.en_US
dc.identifier.citedreferenceLepore AC, Haenggeli C, Gasmi M, et al. Intraparenchymal spinal cord delivery of adeno‐associated virus IGF‐1 is protective in the SOD1G93A model of ALS. Brain Res 2007; 1185: 256 – 265.en_US
dc.identifier.citedreferenceKaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH. Retrograde viral delivery of IGF‐1 prolongs survival in a mouse ALS model. Science 2003; 301: 839 – 842.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.