Cone beam computed tomography use in orthodontics
dc.contributor.author | Nervina, JM | en_US |
dc.date.accessioned | 2012-03-16T15:56:47Z | |
dc.date.available | 2013-05-01T17:24:43Z | en_US |
dc.date.issued | 2012-03 | en_US |
dc.identifier.citation | Nervina, JM (2012). "Cone beam computed tomography use in orthodontics." Australian Dental Journal 57. <http://hdl.handle.net/2027.42/90211> | en_US |
dc.identifier.issn | 0045-0421 | en_US |
dc.identifier.issn | 1834-7819 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/90211 | |
dc.description.abstract | Cone beam computed tomography (CBCT) is widely used by orthodontists to obtain three‐dimensional (3‐D) images of their patients. This is of value as malocclusion results from discrepancies in three planes of space. This review tracks the use of CBCT in orthodontics, from its validation as an accurate and reliable tool, to its use in diagnosing and treatment planning, and in assessing treatment outcomes in orthodontics. | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.publisher | Blackwell Publishing Ltd | en_US |
dc.subject.other | Orthodontics | en_US |
dc.subject.other | Radiography | en_US |
dc.subject.other | Imaging | en_US |
dc.subject.other | Cone Beam Computed Tomography | en_US |
dc.title | Cone beam computed tomography use in orthodontics | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Dentistry | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | School of Dentistry, Department of Orthodontics and Pediatric Dentistry, The University of Michigan, Ann Arbor, Michigan, USA. | en_US |
dc.identifier.pmid | 22376101 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/90211/1/j.1834-7819.2011.01662.x.pdf | |
dc.identifier.doi | 10.1111/j.1834-7819.2011.01662.x | en_US |
dc.identifier.source | Australian Dental Journal | en_US |
dc.identifier.citedreference | Quereshy FA, Barnum G, Demko C, et al. Use of cone beam computed tomography to volumetrically assess alveolar cleft defects–preliminary results. J Oral Maxillofac Surg 2011 May 4. [Epub ahead of print.] | en_US |
dc.identifier.citedreference | Tso HH, Lee JS, Huang JC, Maki K, Hatcher D, Miller AJ. Evaluation of the human airway using cone‐beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: 768 – 776. | en_US |
dc.identifier.citedreference | Kim YJ, Hong JS, Hwang YI, Park YH. Three‐dimensional analysis of pharyngeal airway in preadolescent children with different anteroposterior skeletal patterns. Am J Orthod Dentofacial Orthop 2010; 137: 306.e301‐311, discussion 306‐307. | en_US |
dc.identifier.citedreference | El H, Palomo JM. Measuring the airway in 3 dimensions: a reliability and accuracy study. Am J Orthod Dentofacial Orthop 2010; 137: S50.e51‐59, discussion S50‐52. | en_US |
dc.identifier.citedreference | Zhao Y, Nguyen M, Gohl E, Mah JK, Sameshima G, Enciso R. Oropharyngeal airway changes after rapid palatal expansion evaluated with cone‐beam computed tomography. Am J Orthod Dentofacial Orthop 2010; 137: S71 – 78. | en_US |
dc.identifier.citedreference | Valiathan M, El H, Hans MG, Palomo MJ. Effects of extraction versus non‐extraction treatment on oropharyngeal airway volume. Angle Orthod 2010; 80: 1068 – 1074. | en_US |
dc.identifier.citedreference | Carter L, Farman AG, Geist J, et al. American Academy of Oral and Maxillofacial Radiology executive opinion statement on performing and interpreting diagnostic cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: 561 – 562. | en_US |
dc.identifier.citedreference | Popat H, Drage N, Durning P. Mid‐line clefts of the cervical vertebrae – an incidental finding arising from cone beam computed tomography of the dental patient. Br Dent J 2008; 204: 303 – 306. | en_US |
dc.identifier.citedreference | Laffranchi L, Dalessandri D, Tonni I, Paganelli C. Use of CBCT in the orthodontic diagnosis of a patient with pycnodysostosis. Minerva Stomatol 2010; 59: 653 – 661. | en_US |
dc.identifier.citedreference | Durack C, Patel S. The use of cone beam computed tomography in the management of dens invaginatus affecting a strategic tooth in a patient affected by hypodontia: a case report. Int Endod J 2011; 44: 474 – 483. | en_US |
dc.identifier.citedreference | Cha JY, Mah J, Sinclair P. Incidental findings in the maxillofacial area with 3‐dimensional cone‐beam imaging. Am J Orthod Dentofacial Orthop 2007; 132: 7 – 14. | en_US |
dc.identifier.citedreference | Pazera P, Bornstein MM, Pazera A, Sendi P, Katsaros C. Incidental maxillary sinus findings in orthodontic patients: a radiographic analysis using cone‐beam computed tomography (CBCT). Orthod Craniofac Res 2011; 14: 17 – 24. | en_US |
dc.identifier.citedreference | Silva MA, Wolf U, Heinicke F, Bumann A, Visser H, Hirsch E. Cone‐beam computed tomography for routine orthodontic treatment planning: a radiation dose evaluation. Am J Orthod Dentofacial Orthop 2008; 133: 640.e641‐645. | en_US |
dc.identifier.citedreference | Hujoel P, Hollender L, Bollen AM, Young JD, McGee M, Grosso A. Head‐and‐neck organ doses from an episode of orthodontic care. Am J Orthod Dentofacial Orthop 2008; 133: 210 – 217. | en_US |
dc.identifier.citedreference | Jung BA, Wehrbein H, Heuser L, Kunkel M. Vertical palatal bone dimensions on lateral cephalometry and cone‐beam computed tomography: implications for palatal implant placement. Clin Oral Implants Res 2011; 22: 664 – 668. | en_US |
dc.identifier.citedreference | Isaacson KG, Thom AR, Horner K, Whaites E. Orthodontic radiographs – guidelines for the use of radiographs in clinical orthodontics. 3rd edn. London: British Orthodontic Society, 2008. | en_US |
dc.identifier.citedreference | Turpin DL. Clinical guidelines and the use of cone‐beam computed tomography. Am J Orthod Dentofacial Orthop 2010; 138: 1 – 2. | en_US |
dc.identifier.citedreference | Nakajima A, Murata M, Tanaka E, et al. Development of three‐dimensional FE modeling system from the limited cone beam CT images for orthodontic tipping tooth movement. Dent Mater J 2007; 26: 882 – 891. | en_US |
dc.identifier.citedreference | Ammar HH, Ngan P, Crout RJ, Mucino VH, Mukdadi OM. Three‐dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2011; 139: e59 – 71. | en_US |
dc.identifier.citedreference | Fang Y, Lagravere MO, Carey JP, Major PW, Toogood RR. Maxillary expansion treatment using bone anchors: development and validation of a 3D finite element model. Comput Methods Biomech Biomed Engin 2007; 10: 137 – 149. | en_US |
dc.identifier.citedreference | Bujtar P, Sandor GK, Bojtos A, Szucs A, Barabas J. Finite element analysis of the human mandible at 3 different stages of life. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 110: 301 – 309. | en_US |
dc.identifier.citedreference | Smith BR, Park JH, Cederberg RA. An evaluation of cone‐beam computed tomography use in postgraduate orthodontic programs in the United States and Canada. J Dent Educ 2011; 75: 98 – 106. | en_US |
dc.identifier.citedreference | Korbmacher H, Kahl‐Nieke B, Schollchen M, Heiland M. Value of two cone‐beam computed tomography systems from an orthodontic point of view. J Orofac Orthop 2007; 68: 278 – 289. | en_US |
dc.identifier.citedreference | Moshiri M, Scarfe WC, Hilgers ML, Scheetz JP, Silveira AM, Farman AG. Accuracy of linear measurements from imaging plate and lateral cephalometric images derived from cone‐beam computed tomography. Am J Orthod Dentofacial Orthop 2007; 132: 550 – 560. | en_US |
dc.identifier.citedreference | Stratemann SA, Huang JC, Maki K, Miller AJ, Hatcher DC. Comparison of cone beam computed tomography imaging with physical measures. Dentomaxillofac Radiol 2008; 37: 80 – 93. | en_US |
dc.identifier.citedreference | Kumar V, Ludlow J, Soares Cevidanes LH, Mol A. In vivo comparison of conventional and cone beam CT synthesized cephalograms. Angle Orthod 2008; 78: 873 – 879. | en_US |
dc.identifier.citedreference | Chien PC, Parks ET, Eraso F, Hartsfield JK, Roberts WE, Ofner S. Comparison of reliability in anatomical landmark identification using two‐dimensional digital cephalometrics and three‐dimensional cone beam computed tomography in vivo. Dentomaxillofac Radiol 2009; 38: 262 – 273. | en_US |
dc.identifier.citedreference | Ludlow JB, Gubler M, Cevidanes L, Mol A. Precision of cephalometric landmark identification: cone‐beam computed tomography vs. conventional cephalometric views. Am J Orthod Dentofacial Orthop 2009; 136: 312. e311‐310, discussion 312‐313. | en_US |
dc.identifier.citedreference | Grauer D, Cevidanes LS, Styner MA, et al. Accuracy and landmark error calculation using cone‐beam computed tomography‐generated cephalograms. Angle Orthod 2010; 80: 286 – 294. | en_US |
dc.identifier.citedreference | Gribel BF, Gribel MN, Frazao DC, McNamara JA Jr, Manzi FR. Accuracy and reliability of craniometric measurements on lateral cephalometry and 3D measurements on CBCT scans. Angle Orthod 2011; 81: 26 – 35. | en_US |
dc.identifier.citedreference | Zamora N, Llamas JM, Cibrian R, Gandia JL, Paredes V. Cephalometric measurements from 3D reconstructed images compared with conventional 2D images. Angle Orthod 2011; 81: 856 – 864. | en_US |
dc.identifier.citedreference | van Vlijmen OJ, Maal TJ, Berge SJ, Bronkhorst EM, Katsaros C, Kuijpers‐Jagtman AM. A comparison between two‐dimensional and three‐dimensional cephalometry on frontal radiographs and on cone beam computed tomography scans of human skulls. Eur J Oral Sci 2009; 117: 300 – 305. | en_US |
dc.identifier.citedreference | Leuzinger M, Dudic A, Giannopoulou C, Kiliaridis S. Root‐contact evaluation by panoramic radiography and cone‐beam computed tomography of super‐high resolution. Am J Orthod Dentofacial Orthop 2010; 137: 389 – 392. | en_US |
dc.identifier.citedreference | van Vlijmen OJ, Berge SJ, Swennen GR, Bronkhorst EM, Katsaros C, Kuijpers‐Jagtman AM. Comparison of cephalometric radiographs obtained from cone‐beam computed tomography scans and conventional radiographs. J Oral Maxillofac Surg 2009; 67: 92 – 97. | en_US |
dc.identifier.citedreference | Cattaneo PM, Bloch CB, Calmar D, Hjortshoj M, Melsen B. Comparison between conventional and cone‐beam computed tomography‐generated cephalograms. Am J Orthod Dentofacial Orthop 2008; 134: 798 – 802. | en_US |
dc.identifier.citedreference | Periago DR, Scarfe WC, Moshiri M, Scheetz JP, Silveira AM, Farman AG. Linear accuracy and reliability of cone beam CT derived 3‐dimensional images constructed using an orthodontic volumetric rendering program. Angle Orthod 2008; 78: 387 – 395. | en_US |
dc.identifier.citedreference | White SC. Cone‐beam imaging in dentistry. Health Phys 2008; 95: 628 – 637. | en_US |
dc.identifier.citedreference | Lagravere MO, Carey J, Toogood RW, Major PW. Three‐dimensional accuracy of measurements made with software on cone‐beam computed tomography images. Am J Orthod Dentofacial Orthop 2008; 134: 112 – 116. | en_US |
dc.identifier.citedreference | Damstra J, Fourie Z, Huddleston Slater JJ, Ren Y. Accuracy of linear measurements from cone‐beam computed tomography‐derived surface models of different voxel sizes. Am J Orthod Dentofacial Orthop 2010; 137: 16. e11‐16, discussion 16‐17. | en_US |
dc.identifier.citedreference | Gribel BF, Gribel MN, Manzi FR, Brooks SL, McNamara JA Jr. From 2D to 3D: an algorithm to derive normal values for 3‐dimensional computerized assessment. Angle Orthod 2011; 81: 3 – 10. | en_US |
dc.identifier.citedreference | Hassan B, Couto Souza P, Jacobs R, de Azambuja Berti S, van der Stelt P. Influence of scanning and reconstruction parameters on quality of three‐dimensional surface models of the dental arches from cone beam computed tomography. Clin Oral Investig 2010; 14: 303 – 310. | en_US |
dc.identifier.citedreference | White AJ, Fallis DW, Vandewalle KS. Analysis of intra‐arch and interarch measurements from digital models with 2 impression materials and a modeling process based on cone‐beam computed tomography. Am J Orthod Dentofacial Orthop 2010; 137: 456. e451‐459, discussion 456‐457. | en_US |
dc.identifier.citedreference | Baumgaertel S, Palomo JM, Palomo L, Hans MG. Reliability and accuracy of cone‐beam computed tomography dental measurements. Am J Orthod Dentofacial Orthop 2009; 136: 19 – 25, discussion 25‐18. | en_US |
dc.identifier.citedreference | Kau CH, Littlefield J, Rainy N, Nguyen JT, Creed B. Evaluation of CBCT digital models and traditional models using the Little’s Index. Angle Orthod 2010; 80: 435 – 439. | en_US |
dc.identifier.citedreference | Cevidanes LH, Bailey LJ, Tucker GR Jr, et al. Superimposition of 3D cone‐beam CT models of orthognathic surgery patients. Dentomaxillofac Radiol 2005; 34: 369 – 375. | en_US |
dc.identifier.citedreference | Jacquet W, Nyssen E, Bottenberg P, de Groen P, Vande Vannet B. Novel information theory based method for superimposition of lateral head radiographs and cone beam computed tomography images. Dentomaxillofac Radiol 2010; 39: 191 – 198. | en_US |
dc.identifier.citedreference | Choi JH, Mah J. A new method for superimposition of CBCT volumes. J Clin Orthod 2010; 44: 303 – 312. | en_US |
dc.identifier.citedreference | Tai K, Park JH, Mishima K, Hotokezaka H. Using superimposition of 3‐dimensional cone‐beam computed tomography images with surface‐based registration in growing patients. J Clin Pediatr Dent 2010; 34: 361 – 367. | en_US |
dc.identifier.citedreference | Bedoya MM, Park JH. A review of the diagnosis and management of impacted maxillary canines. J Am Dent Assoc 2009; 140: 1485 – 1493. | en_US |
dc.identifier.citedreference | Maverna R, Gracco A. Different diagnostic tools for the localization of impacted maxillary canines: clinical considerations. Prog Orthod 2007; 8: 28 – 44. | en_US |
dc.identifier.citedreference | Haney E, Gansky SA, Lee JS, et al. Comparative analysis of traditional radiographs and cone‐beam computed tomography volumetric images in the diagnosis and treatment planning of maxillary impacted canines. Am J Orthod Dentofacial Orthop 2010; 137: 590 – 597. | en_US |
dc.identifier.citedreference | Becker A, Chaushu S, Casap‐Caspi N. Cone‐beam computed tomography and the orthosurgical management of impacted teeth. J Am Dent Assoc 2010; 141 ( Suppl 3 ): 14S – 18S. | en_US |
dc.identifier.citedreference | Botticelli S, Verna C, Cattaneo PM, Heidmann J, Melsen B. Two‐ versus three‐dimensional imaging in subjects with unerupted maxillary canines. Eur J Orthod 2011; 33: 344 – 349. | en_US |
dc.identifier.citedreference | Alqerban A, Jacobs R, Fieuws S, Willems G. Comparison of two cone beam computed tomographic systems versus panoramic imaging for localization of impacted maxillary canines and detection of root resorption. Eur J Orthod 2011; 33: 93 – 102. | en_US |
dc.identifier.citedreference | Sameshima GT, Sinclair PM. Predicting and preventing root resorption: Part I. Diagnostic factors. Am J Orthod Dentofacial Orthop 2001; 119: 505 – 510. | en_US |
dc.identifier.citedreference | Lund H, Grondahl K, Grondahl HG. Cone beam computed tomography for assessment of root length and marginal bone level during orthodontic treatment. Angle Orthod 2010; 80: 466 – 473. | en_US |
dc.identifier.citedreference | Liu Y, Olszewski R, Alexandroni ES, Enciso R, Xu T, Mah JK. The validity of in vivo tooth volume determinations from cone‐beam computed tomography. Angle Orthod 2010; 80: 160 – 166. | en_US |
dc.identifier.citedreference | Dudic A, Giannopoulou C, Leuzinger M, Kiliaridis S. Detection of apical root resorption after orthodontic treatment by using panoramic radiography and cone‐beam computed tomography of super‐high resolution. Am J Orthod Dentofacial Orthop 2009; 135: 434 – 437. | en_US |
dc.identifier.citedreference | Alqerban A, Jacobs R, Souza PC, Willems G. In‐vitro comparison of 2 cone‐beam computed tomography systems and panoramic imaging for detecting simulated canine impaction‐induced external root resorption in maxillary lateral incisors. Am J Orthod Dentofacial Orthop 2009; 136: 764.e761‐711, discussion 764‐765. | en_US |
dc.identifier.citedreference | Sherrard JF, Rossouw PE, Benson BW, Carrillo R, Buschang PH. Accuracy and reliability of tooth and root lengths measured on cone‐beam computed tomographs. Am J Orthod Dentofacial Orthop 2010; 137: S100 – 108. | en_US |
dc.identifier.citedreference | Bjerklin K, Guitirokh CH. Maxillary incisor root resorption induced by ectopic canines: a follow‐up study, 13 to 28 years post‐treatment. Angle Orthod 2011; 81: 800 – 806. | en_US |
dc.identifier.citedreference | Kau CH, Richmond S, Palomo JM, Hans MG. Three‐dimensional cone beam computerized tomography in orthodontics. J Orthod 2005; 32: 282 – 293. | en_US |
dc.identifier.citedreference | Kau CH, English JD, Muller‐Delgardo MG, Hamid H, Ellis RK, Winklemann S. Retrospective cone‐beam computed tomography evaluation of temporary anchorage devices. Am J Orthod Dentofacial Orthop 2010; 137: 166.e161‐165, discussion 166‐167. | en_US |
dc.identifier.citedreference | Schatzle M, Mannchen R, Zwahlen M, Lang NP. Survival and failure rates of orthodontic temporary anchorage devices: a systematic review. Clin Oral Implants Res 2009; 20: 1351 – 1359. | en_US |
dc.identifier.citedreference | Gracco A, Lombardo L, Cozzani M, Siciliani G. Quantitative evaluation with CBCT of palatal bone thickness in growing patients. Prog Orthod 2006; 7: 164 – 174. | en_US |
dc.identifier.citedreference | King KS, Lam EW, Faulkner MG, Heo G, Major PW. Vertical bone volume in the paramedian palate of adolescents: a computed tomography study. Am J Orthod Dentofacial Orthop 2007; 132: 783 – 788. | en_US |
dc.identifier.citedreference | Gracco A, Luca L, Cozzani M, Siciliani G. Assessment of palatal bone thickness in adults with cone beam computerised tomography. Aust Orthod J 2007; 23: 109 – 113. | en_US |
dc.identifier.citedreference | Gracco A, Lombardo L, Cozzani M, Siciliani G. Quantitative cone‐beam computed tomography evaluation of palatal bone thickness for orthodontic miniscrew placement. Am J Orthod Dentofacial Orthop 2008; 134: 361 – 369. | en_US |
dc.identifier.citedreference | Park J, Cho HJ. Three‐dimensional evaluation of interradicular spaces and cortical bone thickness for the placement and initial stability of microimplants in adults. Am J Orthod Dentofacial Orthop 2009; 136: 314.e311‐312, discussion 314‐315. | en_US |
dc.identifier.citedreference | Jung BA, Wehrbein H, Wagner W, Kunkel M. Preoperative diagnostic for palatal implants: is CT or CBCT necessary? Clin Implant Dent Relat Res 2010 Feb 3. [Epub ahead of print.] | en_US |
dc.identifier.citedreference | Fayed MM, Pazera P, Katsaros C. Optimal sites for orthodontic mini‐implant placement assessed by cone beam computed tomography. Angle Orthod 2010; 80: 939 – 951. | en_US |
dc.identifier.citedreference | Isoda K, Ayukawa Y, Tsukiyama Y, Sogo M, Matsushita Y, Koyano K. Relationship between the bone density estimated by cone‐beam computed tomography and the primary stability of dental implants. Clin Oral Implants Res 2011 5 May. [Epub ahead of print.] | en_US |
dc.identifier.citedreference | Kim SH, Kang JM, Choi B, Nelson G. Clinical application of a stereolithographic surgical guide for simple positioning of orthodontic mini‐implants. World J Orthod 2008; 9: 371 – 382. | en_US |
dc.identifier.citedreference | Miyazawa K, Kawaguchi M, Tabuchi M, Goto S. Accurate pre‐surgical determination for self‐drilling miniscrew implant placement using surgical guides and cone‐beam computed tomography. Eur J Orthod 2010; 32: 735 – 740. | en_US |
dc.identifier.citedreference | Godoy F, Godoy‐Bezerra J, Rosenblatt A. Treatment of posterior crossbite comparing 2 appliances: a community‐based trial. Am J Orthod Dentofacial Orthop 2011; 139: e45 – 52. | en_US |
dc.identifier.citedreference | Kurol J, Berglund L. Longitudinal study and cost‐benefit analysis of the effect of early treatment of posterior cross‐bites in the primary dentition. Eur J Orthod 1992; 14: 173 – 179. | en_US |
dc.identifier.citedreference | Rungcharassaeng K, Caruso JM, Kan JY, Kim J, Taylor G. Factors affecting buccal bone changes of maxillary posterior teeth after rapid maxillary expansion. Am J Orthod Dentofacial Orthop 2007; 132: 428.e421‐428. | en_US |
dc.identifier.citedreference | Garrett BJ, Caruso JM, Rungcharassaeng K, Farrage JR, Kim JS, Taylor GD. Skeletal effects to the maxilla after rapid maxillary expansion assessed with cone‐beam computed tomography. Am J Orthod Dentofacial Orthop 2008; 134: 8 – 9. | en_US |
dc.identifier.citedreference | Lagravere MO, Carey J, Heo G, Toogood RW, Major PW. Transverse, vertical, and anteroposterior changes from bone‐anchored maxillary expansion vs traditional rapid maxillary expansion: a randomized clinical trial. Am J Orthod Dentofacial Orthop 2010; 137: 304.e301‐312, discussion 304‐305. | en_US |
dc.identifier.citedreference | Christie KF, Boucher N, Chung CH. Effects of bonded rapid palatal expansion on the transverse dimensions of the maxilla: a cone‐beam computed tomography study. Am J Orthod Dentofacial Orthop 2010; 137: S79 – 85. | en_US |
dc.identifier.citedreference | Tai K, Hotokezaka H, Park JH, et al. Preliminary cone‐beam computed tomography study evaluating dental and skeletal changes after treatment with a mandibular Schwarz appliance. Am J Orthod Dentofacial Orthop 2010; 138: 262.e261‐262, e211, discussion 262‐263. | en_US |
dc.identifier.citedreference | Gohl E, Nguyen M, Enciso R. Three‐dimensional computed tomography comparison of the maxillary palatal vault between patients with rapid palatal expansion and orthodontically treated controls. Am J Orthod Dentofacial Orthop 2010; 138: 477 – 485. | en_US |
dc.identifier.citedreference | Kartalian A, Gohl E, Adamian M, Enciso R. Cone‐beam computerized tomography evaluation of the maxillary dentoskeletal complex after rapid palatal expansion. Am J Orthod Dentofacial Orthop 2010; 138: 486 – 492. | en_US |
dc.identifier.citedreference | Gauthier C, Voyer R, Paquette M, Rompre P, Papadakis A. Periodontal effects of surgically assisted rapid palatal expansion evaluated clinically and with cone‐beam computerized tomography: 6‐month preliminary results. Am J Orthod Dentofacial Orthop 2011; 139: S117 – 128. | en_US |
dc.identifier.citedreference | Leung CC, Palomo L, Griffith R, Hans MG. Accuracy and reliability of cone‐beam computed tomography for measuring alveolar bone height and detecting bony dehiscences and fenestrations. Am J Orthod Dentofacial Orthop 2010; 137: S109 – 119. | en_US |
dc.identifier.citedreference | Evangelista K, Vasconcelos Kde F, Bumann A, Hirsch E, Nitka M, Silva MA. Dehiscence and fenestration in patients with Class I and Class II Division 1 malocclusion assessed with cone‐beam computed tomography. Am J Orthod Dentofacial Orthop 2010; 138: 133.e131‐137, discussion 133‐135. | en_US |
dc.identifier.citedreference | Sun Z, Smith T, Kortam S, Kim DG, Tee BC, Fields H. Effect of bone thickness on alveolar bone‐height measurements from cone‐beam computed tomography images. Am J Orthod Dentofacial Orthop 2011; 139: e117 – 127. | en_US |
dc.identifier.citedreference | Basseri B, Kianmahd BD, Roostaeian J, et al. Current national incidence, trends, and health care resource utilization of cleft lip‐cleft palate. Plast Reconstr Surg 2011; 127: 1255 – 1262. | en_US |
dc.identifier.citedreference | Hamada Y, Kondoh T, Noguchi K, et al. Application of limited cone beam computed tomography to clinical assessment of alveolar bone grafting: a preliminary report. Cleft Palate Craniofac J 2005; 42: 128 – 137. | en_US |
dc.identifier.citedreference | Wortche R, Hassfeld S, Lux CJ, et al. Clinical application of cone beam digital volume tomography in children with cleft lip and palate. Dentomaxillofac Radiol 2006; 35: 88 – 94. | en_US |
dc.identifier.citedreference | Schneiderman ED, Xu H, Salyer KE. Characterization of the maxillary complex in unilateral cleft lip and palate using cone‐beam computed tomography: a preliminary study. J Craniofac Surg 2009; 20 ( Suppl 2 ): 1699 – 1710. | en_US |
dc.identifier.citedreference | Oberoi S, Chigurupati R, Gill P, Hoffman WY, Vargervik K. Volumetric assessment of secondary alveolar bone grafting using cone beam computed tomography. Cleft Palate Craniofac J 2009; 46: 503 – 511. | en_US |
dc.identifier.citedreference | Shirota T, Kurabayashi H, Ogura H, Seki K, Maki K, Shintani S. Analysis of bone volume using computer simulation system for secondary bone graft in alveolar cleft. Int J Oral Maxillofac Surg 2010; 39: 904 – 908. | en_US |
dc.identifier.citedreference | Oberoi S, Gill P, Chigurupati R, Hoffman WY, Hatcher DC, Vargervik K. Three‐dimensional assessment of the eruption path of the canine in individuals with bone‐grafted alveolar clefts using cone beam computed tomography. Cleft Palate Craniofac J 2010; 47: 507 – 512. | en_US |
dc.identifier.citedreference | Miyamoto J, Nakajima T. Anthropometric evaluation of complete unilateral cleft lip nose with cone beam CT in early childhood. J Plast Reconstr Aesthet Surg 2010; 63: 9 – 14. | en_US |
dc.identifier.citedreference | Aboudara CA, Hatcher D, Nielsen IL, Miller A. A three‐dimensional evaluation of the upper airway in adolescents. Orthod Craniofac Res 2003; 6 ( Suppl 1 ): 173 – 175. | en_US |
dc.identifier.citedreference | Aboudara C, Nielsen I, Huang JC, Maki K, Miller AJ, Hatcher D. Comparison of airway space with conventional lateral headfilms and 3‐dimensional reconstruction from cone‐beam computed tomography. Am J Orthod Dentofacial Orthop 2009; 135: 468 – 479. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.