Show simple item record

Structure and activity of DmmA, a marine haloalkane dehalogenase

dc.contributor.authorGehret, Jennifer J.en_US
dc.contributor.authorGu, Liangcaien_US
dc.contributor.authorGeders, Todd W.en_US
dc.contributor.authorBrown, William Clayen_US
dc.contributor.authorGerwick, Lenaen_US
dc.contributor.authorGerwick, William H.en_US
dc.contributor.authorSherman, David H.en_US
dc.contributor.authorSmith, Janet L.en_US
dc.date.accessioned2012-03-16T15:57:39Z
dc.date.available2013-04-01T14:17:23Zen_US
dc.date.issued2012-02en_US
dc.identifier.citationGehret, Jennifer J.; Gu, Liangcai; Geders, Todd W.; Brown, William Clay; Gerwick, Lena; Gerwick, William H.; Sherman, David H.; Smith, Janet L. (2012). "Structure and activity of DmmA, a marine haloalkane dehalogenase." Protein Science 21(2): 239-248. <http://hdl.handle.net/2027.42/90241>en_US
dc.identifier.issn0961-8368en_US
dc.identifier.issn1469-896Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90241
dc.description.abstractDmmA is a haloalkane dehalogenase (HLD) identified and characterized from the metagenomic DNA of a marine microbial consortium. Dehalogenase activity was detected with 1,3‐dibromopropane as substrate, with steady‐state kinetic parameters typical of HLDs ( K m = 0.24 ± 0.05 mM, k cat = 2.4 ± 0.1 s −1 ). The 2.2‐Å crystal structure of DmmA revealed a fold and active site similar to other HLDs, but with a substantially larger active site binding pocket, suggestive of an ability to act on bulky substrates. This enhanced cavity was shown to accept a range of linear and cyclic substrates, suggesting that DmmA will contribute to the expanding industrial applications of HLDs. PDB Code(s): 3U1Ten_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherHaloalkane Dehalogenaseen_US
dc.subject.otherMarine Microbial Consortiumen_US
dc.subject.otherα/β Hydrolaseen_US
dc.subject.otherCurNen_US
dc.subject.otherDmmAen_US
dc.titleStructure and activity of DmmA, a marine haloalkane dehalogenaseen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumLife Sciences Institute, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumDepartment of Biological Chemistry, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumDepartment of Medicinal Chemistry, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationumCenter for Structural Biology, University of Michigan, Ann Arbor, MI 48109en_US
dc.contributor.affiliationumLife Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109en_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan, Ann Arbor, MIen_US
dc.contributor.affiliationotherCenter for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093en_US
dc.contributor.affiliationotherR&D Systems, Inc., Minneapolis, MNen_US
dc.contributor.affiliationotherDepartment of Genetics, Harvard Medical School, 77 Ave Louis Pasteur, NRB 232, Boston, MA 02115en_US
dc.contributor.affiliationotherSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093en_US
dc.identifier.pmid22124946en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90241/1/PRO_2009_sm_suppinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90241/2/2009_ftp.pdf
dc.identifier.doi10.1002/pro.2009en_US
dc.identifier.sourceProtein Scienceen_US
dc.identifier.citedreferenceSchindler JF, Naranjo PA, Honaberger DA, Chang CH, Brainard JR, Vanderberg LA, Unkefer CJ ( 1999 ) Haloalkane dehalogenases: steady‐state kinetics and halide inhibition. Biochemistry 38: 5772 – 5778.en_US
dc.identifier.citedreferenceLos GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV ( 2008 ) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3: 373 – 382.en_US
dc.identifier.citedreferenceKoudelakova T, Chovancova E, Brezovsky J, Monincova M, Fortova A, Jarkovsky J, Damborsky J ( 2011 ) Substrate specificity of haloalkane dehalogenases. Biochem J 435: 345 – 354.en_US
dc.identifier.citedreferenceJanssen DB ( 2004 ) Evolving haloalkane dehalogenases. Curr Opin Chem Biol 8: 150 – 159.en_US
dc.identifier.citedreferenceChovancova E, Kosinski J, Bujnicki JM, Damborsky J ( 2007 ) Phylogenetic analysis of haloalkane dehalogenases. Proteins 67: 305 – 316.en_US
dc.identifier.citedreferenceVerschueren KH, Kingma J, Rozeboom HJ, Kalk KH, Janssen DB, Dijkstra BW ( 1993 ) Crystallographic and fluorescence studies of the interaction of haloalkane dehalogenase with halide ions. Studies with halide compounds reveal a halide binding site in the active site. Biochemistry 32: 9031 – 9037.en_US
dc.identifier.citedreferenceVerschueren KH, Seljee F, Rozeboom HJ, Kalk KH, Dijkstra BW ( 1993 ) Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature 363: 693 – 698.en_US
dc.identifier.citedreferencePikkemaat MG, Ridder IS, Rozeboom HJ, Kalk KH, Dijkstra BW, Janssen DB ( 1999 ) Crystallographic and kinetic evidence of a collision complex formed during halide import in haloalkane dehalogenase. Biochemistry 38: 12052 – 12061.en_US
dc.identifier.citedreferenceHesseler M, Bogdanovic X, Hidalgo A, Berenguer J, Palm GJ, Hinrichs W, Bornscheuer UT ( 2011 ) Cloning, functional expression, biochemical characterization, and structural analysis of a haloalkane dehalogenase from Plesiocystis pacifica SIR‐1. Appl Microbiol Biotechnol 91: 1049 – 1060.en_US
dc.identifier.citedreferenceNewman J, Peat TS, Richard R, Kan L, Swanson PE, Affholter JA, Holmes IH, Schindler JF, Unkefer CJ, Terwilliger TC ( 1999 ) Haloalkane dehalogenases: structure of a Rhodococcus enzyme. Biochemistry 38: 16105 – 16114.en_US
dc.identifier.citedreferenceStsiapanava A, Dohnalek J, Gavira JA, Kuty M, Koudelakova T, Damborsky J, Kuta Smatanova I ( 2010 ) Atomic resolution studies of haloalkane dehalogenases DhaA04, DhaA14 and DhaA15 with engineered access tunnels. Acta Crystallogr D Biol Crystallogr 66: 962 – 969.en_US
dc.identifier.citedreferenceMarek J, Vevodova J, Smatanova IK, Nagata Y, Svensson LA, Newman J, Takagi M, Damborsky J ( 2000 ) Crystal structure of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26. Biochemistry 39: 14082 – 14086.en_US
dc.identifier.citedreferenceOakley AJ, Prokop Z, Bohac M, Kmunicek J, Jedlicka T, Monincova M, Kuta‐Smatanova I, Nagata Y, Damborsky J, Wilce MC ( 2002 ) Exploring the structure and activity of haloalkane dehalogenase from Sphingomonas paucimobilis UT26: evidence for product‐ and water‐mediated inhibition. Biochemistry 41: 4847 – 4855.en_US
dc.identifier.citedreferenceStreltsov VA, Prokop Z, Damborsky J, Nagata Y, Oakley A, Wilce MC ( 2003 ) Haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26: X‐ray crystallographic studies of dehalogenation of brominated substrates. Biochemistry 42: 10104 – 10112.en_US
dc.identifier.citedreferenceOakley AJ, Klvana M, Otyepka M, Nagata Y, Wilce MC, Damborsky J ( 2004 ) Crystal structure of haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26 at 0.95 A resolution: dynamics of catalytic residues. Biochemistry 43: 870 – 878.en_US
dc.identifier.citedreferenceProkop Z, Sato Y, Brezovsky J, Mozga T, Chaloupkova R, Koudelakova T, Jerabek P, Stepankova V, Natsume R, van Leeuwen JG, Janssen DB, Florian J, Nagata Y, Senda T, Damborsky J ( 2010 ) Enantioselectivity of haloalkane dehalogenases and its modulation by surface loop engineering. Angew Chem Int Ed Engl 49: 6111 – 6115.en_US
dc.identifier.citedreferenceMazumdar PA, Hulecki JC, Cherney MM, Garen CR, James MN ( 2008 ) X‐ray crystal structure of Mycobacterium tuberculosis haloalkane dehalogenase Rv2579. Biochim Biophys Acta 1784: 351 – 362.en_US
dc.identifier.citedreferenceChang Z, Sitachitta N, Rossi JV, Roberts MA, Flatt PM, Jia J, Sherman DH, Gerwick WH ( 2004 ) Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod 67: 1356 – 1367.en_US
dc.identifier.citedreferenceEngene N, Rottacker EC, Kastovsky J, Byrum T, Choi H, Ellisman MH, Komarek J, Gerwick WH (in press) Moorea producta gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int J Syst Evol Microbiol.en_US
dc.identifier.citedreferenceGu L, Wang B, Kulkarni A, Gehret JJ, Lloyd KR, Gerwick L, Gerwick WH, Wipf P, Hakansson K, Smith JL, Sherman DH ( 2009 ) Polyketide decarboxylative chain termination preceded by o‐sulfonation in curacin a biosynthesis. J Am Chem Soc 131: 16033 – 16035.en_US
dc.identifier.citedreferenceJones AC, Monroe EA, Podell S, Hess WR, Klages S, Esquenazi E, Niessen S, Hoover H, Rothmann M, Lasken RS, Yates JR, III, Reinhardt R, Kube M, Burkart MD, Allen EE, Dorrestein PC, Gerwick WH, Gerwick L ( 2011 ) Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula. Proc Natl Acad Sci U S A 108: 8815 – 8820.en_US
dc.identifier.citedreferenceMarvanova S, Nagata Y, Wimmerova M, Sykorova J, Hynkova K, Damborsky J ( 2001 ) Biochemical characterization of broad‐specificity enzymes using multivariate experimental design and a colorimetric microplate assay: characterization of the haloalkane dehalogenase mutants. J Microbiol Methods 44: 149 – 157.en_US
dc.identifier.citedreferenceBosma T, Pikkemaat MG, Kingma J, Dijk J, Janssen DB ( 2003 ) Steady‐state and pre‐steady‐state kinetic analysis of halopropane conversion by a rhodococcus haloalkane dehalogenase. Biochemistry 42: 8047 – 8053.en_US
dc.identifier.citedreferenceMurshudov GN, Vagin AA, Dodson EJ ( 1997 ) Refinement of macromolecular structures by the maximum‐likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240 – 255.en_US
dc.identifier.citedreferenceCCP4 ( 1994 ) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50: 760 – 763.en_US
dc.identifier.citedreferenceZwart PH, Afonine PV, Grosse‐Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, McKee E, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Storoni LC, Terwilliger TC, Adams PD ( 2008 ) Automated structure solution with the PHENIX suite. Methods Mol Biol 426: 419 – 435.en_US
dc.identifier.citedreferenceChen VB, Arendall WB, III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC ( 2010 ) MolProbity: all‐atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66: 12 – 21.en_US
dc.identifier.citedreferenceDeLano WL ( 2002 ) The PyMOL Molecular graphics system, Version 1.3, Schrödinger, LLC. Palo Alto, CA: DeLano Scientific.en_US
dc.identifier.citedreferenceHo BK, Gruswitz F ( 2008 ) HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct Biol 8: 49 –54.en_US
dc.identifier.citedreferenceHasan K, Fortova A, Koudelakova T, Chaloupkova R, Ishitsuka M, Nagata Y, Damborsky J, Prokop Z ( 2011 ) Biochemical characteristics of the novel haloalkane dehalogenase DatA, isolated from the plant pathogen Agrobacterium tumefaciens C58. Appl Environ Microbiol 77: 1881 – 1884.en_US
dc.identifier.citedreferenceChang Z, Flatt P, Gerwick WH, Nguyen VA, Willis CL, Sherman DH ( 2002 ) The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)‐non‐ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit. Gene 296: 235 – 247.en_US
dc.identifier.citedreferenceEdwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick WH ( 2004 ) Structure and biosynthesis of the jamaicamides, new mixed polyketide‐peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol 11: 817 – 833.en_US
dc.identifier.citedreferenceGuerrero SA, Hecht HJ, Hofmann B, Biebl H, Singh M ( 2001 ) Production of selenomethionine‐labelled proteins using simplified culture conditions and generally applicable host/vector systems. Appl Microbiol Biotechnol 56: 718 – 723.en_US
dc.identifier.citedreferenceOtwinowski Z, Minor W ( 1997 ) Processing of X‐ray diffraction data collected in oscillation mode methods in enzymology 276: 307 – 326.en_US
dc.identifier.citedreferenceTerwilliger TC, Berendzen J ( 1999 ) Automated MAD and MIR structure solution. Acta Crystallogr D Biol Crystallogr 55: 849 – 861.en_US
dc.identifier.citedreferenceTerwilliger TC ( 2003 ) Automated main‐chain model building by template matching and iterative fragment extension. Acta Crystallogr D Biol Crystallogr 59: 38 – 44.en_US
dc.identifier.citedreferenceEmsley P, Cowtan K ( 2004 ) Coot: model‐building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126 – 2132.en_US
dc.identifier.citedreferenceStucki G, Thuer M ( 1995 ) Experiences of a large‐scale application of 1,2‐dichloroethane degrading microorganisms for groundwater treatment. Environ Sci Technol 29: 2339 – 2345.en_US
dc.identifier.citedreferenceAlcalde M, Ferrer M, Plou FJ, Ballesteros A ( 2006 ) Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol 24: 281 – 287.en_US
dc.identifier.citedreferenceSwanson PE ( 1999 ) Dehalogenases applied to industrial‐scale biocatalysis. Curr Opin Biotechnol 10: 365 – 369.en_US
dc.identifier.citedreferenceProkop Z, Oplustil F, DeFrank J, Damborsky J ( 2006 ) Enzymes fight chemical weapons. Biotechnol J 1: 1370 – 1380.en_US
dc.identifier.citedreferenceCampbell DW, Muller C, Reardon KF ( 2006 ) Development of a fiber optic enzymatic biosensor for 1,2‐dichloroethane. Biotechnol Lett 28: 883 – 887.en_US
dc.identifier.citedreferenceBidmanova S, Chaloupkova R, Damborsky J, Prokop Z ( 2010 ) Development of an enzymatic fiber‐optic biosensor for detection of halogenated hydrocarbons. Anal Bioanal Chem 398: 1891 – 1898.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.