Show simple item record

Growth factor release from a chemically modified elastomeric poly(1,8‐octanediol‐co‐citrate) thin film promotes angiogenesis in vivo

dc.contributor.authorSharma, Arun K.en_US
dc.contributor.authorBury, Matthew I.en_US
dc.contributor.authorFuller, Natalie J.en_US
dc.contributor.authorRozkiewicz, Dorota I.en_US
dc.contributor.authorHota, Partha V.en_US
dc.contributor.authorKollhoff, David M.en_US
dc.contributor.authorWebber, Matthew J.en_US
dc.contributor.authorTapaskar, Natalieen_US
dc.contributor.authorMeisner, Jay W.en_US
dc.contributor.authorLariviere, Patrick J.en_US
dc.contributor.authorDeStefano, Samanthaen_US
dc.contributor.authorWang, Delien_US
dc.contributor.authorAmeer, Guillermo A.en_US
dc.contributor.authorCheng, Earl Y.en_US
dc.date.accessioned2012-03-16T15:57:48Z
dc.date.available2013-05-01T17:24:40Zen_US
dc.date.issued2012-03en_US
dc.identifier.citationSharma, Arun K.; Bury, Matthew I.; Fuller, Natalie J.; Rozkiewicz, Dorota I.; Hota, Partha V.; Kollhoff, David M.; Webber, Matthew J.; Tapaskar, Natalie; Meisner, Jay W.; Lariviere, Patrick J.; DeStefano, Samantha; Wang, Deli; Ameer, Guillermo A.; Cheng, Earl Y. (2012). "Growth factor release from a chemically modified elastomeric poly(1,8‐octanediol‐co‐citrate) thin film promotes angiogenesis in vivo ." Journal of Biomedical Materials Research Part A 100A(3): 561-570. <http://hdl.handle.net/2027.42/90248>en_US
dc.identifier.issn1549-3296en_US
dc.identifier.issn1552-4965en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90248
dc.description.abstractThe ultimate success of in vivo organ formation utilizing ex vivo expanded “starter” tissues relies heavily upon the level of vascularization provided by either endogenous or artificial induction of angiogenic or vasculogenic events. To facilitate proangiogenic outcomes and promote tissue growth, an elastomeric scaffold previously shown to be instrumental in the urinary bladder regenerative process was modified to release proangiogenic growth factors. Carboxylic acid groups on poly(1,8‐octanediol‐co‐citrate) films (POCfs) were modified with heparan sulfate creating a heparan binding POCf (HBPOCf). Release of proangiogenic growth factors vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), and insulin‐like growth factor 1 (IGF‐1) from HBPOCfs demonstrated an approximate threefold increase over controls during a 30‐day time course in vitro . Atomic force microscopy demonstrated significant topological differences between films. Subcutaneous implantation of POCf alone, HBPOCf, POCf‐VEGF, and HBPOCf‐VEGF within the dorsa of nude rats yielded increased vascular growth in HBPOCf‐VEGF constructs. Vessel quantification studies revealed that POCfs alone contained 41.1 ± 4.1 vessels/mm 2 , while HBPOCf, POCf‐VEGF, and HBPOCF‐VEGF contained 41.7 ± 2.6, 76.3 ± 9.4, and 167.72 ± 15.3 vessels/mm 2 , respectively. Presence of increased vessel growth was demonstrated by CD31 and vWF immunostaining in HBPOCf‐VEGF implanted areas. Data demonstrate that elastomeric POCfs can be chemically modified and possess the ability to promote angiogenesis in vivo . © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherAngiogenesisen_US
dc.subject.otherElastomeren_US
dc.subject.otherLocalizationen_US
dc.subject.otherGrowth Factoren_US
dc.subject.otherBlood Vesselen_US
dc.titleGrowth factor release from a chemically modified elastomeric poly(1,8‐octanediol‐co‐citrate) thin film promotes angiogenesis in vivoen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherChildren's Memorial Research Center, Chicago, Illinois 60614en_US
dc.contributor.affiliationotherNorthwestern University, Evanston, Illinois 60208en_US
dc.contributor.affiliationotherDepartment of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208en_US
dc.contributor.affiliationotherDepartment of Chemistry, Northwestern University, Evanston, Illinois 60208en_US
dc.contributor.affiliationotherInstitute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, Illinois 60611en_US
dc.contributor.affiliationotherDepartment of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611en_US
dc.contributor.affiliationotherLoyola University Medical Center, Maywood, Illinois 60153en_US
dc.contributor.affiliationotherDivision of Pediatric Urology, Children's Memorial Hospital of Chicago, Chicago, Illinois 60614en_US
dc.contributor.affiliationotherInstitute for BioNanotechnology in Medicine, The Feinberg School of Medicine at Northwestern University, 303 East Superior Street, IBNAM 11‐113, Chicago, IL 60611, United Statesen_US
dc.contributor.affiliationotherDepartment of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90248/1/33306_ftp.pdf
dc.identifier.doi10.1002/jbm.a.33306en_US
dc.identifier.sourceJournal of Biomedical Materials Research Part Aen_US
dc.identifier.citedreferencePusztaszeri MP, Seelentag W, Bosman FT. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli‐1 in normal human tissues. J Histochem Cytochem 2006; 54: 385 – 395.en_US
dc.identifier.citedreferenceBankhead RW, Kropp BP, Cheng EY. Evaluation and treatment of children with neurogenic bladders. J Child Neurol 2000; 15: 141 – 149.en_US
dc.identifier.citedreferenceBrown AL, Brook‐Allred TT, Waddell JE, White J, Werkmeister JA, Ramshaw JA, Bagli DJ, Woodhouse KA. Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle‐urothelial cell interactions. Biomaterials 2005; 26: 529 – 543.en_US
dc.identifier.citedreferenceLoai Y, Yeger H, Coz C, Antoon R, Islam SS, Moore K, Moore K, Farhat WA. Bladder tissue engineering: Tissue regeneration and neovascularization of HA‐VEGF‐incorporated bladder acellular constructs in mouse and porcine animal models. J Biomed Mater Res A 2010; 15: 1205 – 1215.en_US
dc.identifier.citedreferenceMondalek FG, Ashley RA, Roth CC, Kibar Y, Shakir N, Ihnat MA, Fung KM, Grady BP, Kropp BP, Lin HK. Enhanced angiogenesis of modified porcine small intestinal submucosa with hyaluronic acid‐poly(lactide‐co‐glycolide) nanoparticles: From fabrication to preclinical validation. J Biomed Mater Res A 2010; 94: 712 – 719.en_US
dc.identifier.citedreferenceAtala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue‐engineered autologous bladders for patients needing cystoplasty. Lancet 2006; 367: 1241 – 1246.en_US
dc.identifier.citedreferenceRajangam K, Behanna HA, Hui MJ, Han X, Hulvat JF, Lomasney JW, Stupp SI. Heparin binding nanostructures to promote growth of blood vessels. Nano Lett 2006; 6: 2086 – 2090.en_US
dc.identifier.citedreferenceCardin AD, Weintraub HJ. Molecular modeling of protein‐glycosaminoglycan interactions. Arteriosclerosis 1989; 9: 21 – 32.en_US
dc.identifier.citedreferenceFromm JR, Hileman RE, Caldwell EE, Weiler JM, Linhardt RJ. Pattern and spacing of basic amino acids in heparin binding sites. Arch Biochem Biophys 1997; 343: 92 – 100.en_US
dc.identifier.citedreferenceLosi P, Briganti E, Magera A, Spiller D, Ristori C, Battolla B, Balderi M, Kull S, Balbarini A, Di Stefano R, Soldani G. Tissue response to poly(ether)urethane‐polydimethylsiloxane‐fibrin composite scaffolds for controlled delivery of pro‐angiogenic growth factors. Biomaterials 2010: 31: 5336 – 5344.en_US
dc.identifier.citedreferenceDavies N, Dobner S, Bezuidenhout D, Schmidt C, Beck M, Zisch AH, Zilla P. The dosage dependence of VEGF stimulation on scaffold neovascularisation. Biomaterials 2008; 29: 3531 – 3538.en_US
dc.identifier.citedreferenceDahms SE, Piechota HJ, Dahiya R, Lue TF, Tanagho EA. Composition and biomechanical properties of the bladder acellular matrix graft: Comparative analysis in rat, pig and human. Br J Urol 1998; 82: 411 – 419.en_US
dc.identifier.citedreferenceYang J, Motlagh D, Webb AR, Ameer GA. Novel biphasic elastomeric scaffold for small‐diameter blood vessel tissue engineering. Tissue Eng 2005; 11: 1876 – 1886.en_US
dc.identifier.citedreferenceYang J, Webb AR, Pickerill SJ, Hageman G, Ameer GA. Synthesis and evaluation of poly(diol citrate) biodegradable elastomers. Biomaterials 2006; 27: 1889 – 1898.en_US
dc.identifier.citedreferenceSharma AK, Hota PV, Matoka DJ, Fuller NJ, Jandali D, Thaker H, Ameer GA, Cheng EY. Urinary bladder smooth muscle regeneration utilizing bone marrow derived mesenchymal stem cell seeded elastomeric poly(1,8‐octanediol‐co‐citrate) based thin films. Biomaterials 2010; 31: 6207 – 6217.en_US
dc.identifier.citedreferenceHeise RL, Ivanova J, Parekh A, Sacks MS. Generating elastin‐rich small intestinal submucosa‐based smooth muscle constructs utilizing exogenous growth factors and cyclic mechanical stimulation. Tissue Eng Part A 2009; 15: 3951 – 3960.en_US
dc.identifier.citedreferenceParedes JI, Villar‐Rodil S, Solís‐Fernández P, Martínez‐Alonso A, Tascón JM. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 2009; 25: 5957 – 5968.en_US
dc.identifier.citedreferenceChow LW, Bitton R, Webber MJ, Carvajal D, Shull KR, Sharma AK, Stupp SI. A bioactive self‐assembled membrane to promote angiogenesis. Biomaterials 2011; 32: 1574 – 1582.en_US
dc.identifier.citedreferenceBrady G, O'Regan E, Miller I, Ogungbowale A, Kapas S, Crean SJ. Serum levels of insulin‐like growth factors (IGFs) and their binding proteins (IGFBPs), −1, −2, −3, in oral cancer. Int J Oral Maxillofac Surg 2007; 36: 259 – 262.en_US
dc.identifier.citedreferenceGraeven U, Andre N, Achilles E, Zornig C, Schmiegel W. Serum levels of vascular endothelial growth factor and basic fibroblast growth factor in patients with soft‐tissue sarcoma. J Cancer Res Clin Oncol 1999; 125: 577 – 581.en_US
dc.identifier.citedreferenceWang Y, Rudym DD, Walsh A, Abrahamsen L, Kim HJ, Kim HS, Kim HS, Kirker‐Head C, Kaplan DL. In vivo degradation of three‐dimensional silk fibroin scaffolds. Biomaterials 2008; 29: 3415 – 3428.en_US
dc.identifier.citedreferenceMazzitelli C, Ferrari M, Toledano M, Osorio E, Monticelli F, Osorio R. Surface roughness analysis of fiber post conditioning processes. J Dent Res 2008; 87: 186 – 190.en_US
dc.identifier.citedreferenceMorrell NT, Leucht P, Zhao L, Kim JB, ten Berge D, Ponnusamy K, Carre AL, Dudek H, Zachlederova M, McElhaney M, Brunton S, Gunzner J, Callow M, Polakis P, Costa M, Zhang XM, Helms JA, Nusse R. Liposomal packaging generates Wnt protein with in vivo biological activity. PLoS One 2008; A3: e2930.en_US
dc.identifier.citedreferenceAdon AM, Zeng X, Harrison MK, Sannem S, Kiyokawa H, Kaldis P, Saavedra HI. Cdk2 and Cdk4 regulate the centrosome cycle and are critical mediators of centrosome amplification in p53‐null cells. Mol Cell Biol 2010; 30: 694 – 710.en_US
dc.identifier.citedreferenceChowdhury F, Na S, Li D, Poh YC, Tanaka TS, Wang F, Wang N. Material properties of the cell dictate stress‐induced spreading and differentiation in embryonic stem cells. Nat Mater 2010; 9: 82 – 88.en_US
dc.identifier.citedreferenceCannon TW, Sweeney DD, Conway DA, Kamo I, Yoshimura N, Sacks M, Chancellor MB. A tissue‐engineered suburethral sling in an animal model of stress urinary incontinence. BJU Int 2005; 96: 664 – 669.en_US
dc.identifier.citedreferenceSharma AK, Bury MI, Marks AJ, Fuller NJ, Meisner JW, Tapaskar N, Halliday LC, Matoka DJ, Cheng EY. A non‐human primate model for urinary bladder regeneration utilizing autologous sources of bone marrow derived mesenchymal stem cells. Stem Cells 2011; 29: 241 – 250.en_US
dc.identifier.citedreferencePérez‐Pérez R, Ortega‐Delgado FJ, García‐Santos E, López JA, Camafeita E, Ricart W, Fernández‐Real JM, Peral B. Differential proteomics of omental and subcutaneous adipose tissue reflects their unalike biochemical and metabolic properties. J Proteome Res 2009; 8: 1682.en_US
dc.identifier.citedreferenceZern BJ, Chu H, Wang Y. Control growth factor release using a self‐assembled [polycation:heparin] complex. PLoS One 2010; 5: e11017.en_US
dc.identifier.citedreferenceGeorge ML, Eccles SA, Tutton MG, Abulafi AM, Swift RI. Correlation of plasma and serum vascular endothelial growth factor levels with platelet count in colorectal cancer: Clinical evidence of platelet scavenging? Clin Cancer Res 2000; 6: 3147 – 3152.en_US
dc.identifier.citedreferenceMohammadi M, Olsen SK, Goetz R. A protein canyon in the FGF‐FGF receptor dimer selects from an à la carte menu of heparan sulfate motifs. Curr Opin Struct Biol 2005; 15: 506 – 516.en_US
dc.identifier.citedreferenceGuvakova MA. Insulin‐like growth factors control cell migration in health and disease. Int J Biochem Cell Biol 2007; 39: 890 – 909.en_US
dc.identifier.citedreferenceWeis SM, Cheresh DA. Pathophysiological consequences of VEGF‐induced vascular permeability. Nature 2005; 437: 497 – 504.en_US
dc.identifier.citedreferenceJandt KD, Finke M, Cacciafesta P. Aspects of the physical chemistry of polymers, biomaterials and mineralised tissues investigated with atomic force microscopy (AFM). Colloids Surf B Biointerfaces 2000; 19: 301 – 314.en_US
dc.identifier.citedreferenceKim EJ, Boehm CA, Mata A, Fleischman AJ, Muschler GF, Roy S. Post microtextures accelerate cell proliferation and osteogenesis. Acta Biomater 2010; 6: 160 – 169.en_US
dc.identifier.citedreferenceBiggs MJ, Richards RG, McFarlane S, Wilkinson CD, Oreffo RO, Dalby MJ. Adhesion formation of primary human osteoblasts and the functional response of mesenchymal stem cells to 330nm deep microgrooves. J R Soc Interface 2008; 5: 1231 – 1242.en_US
dc.identifier.citedreferenceChun YW, Khang D, Haberstroh KM, Webster TJ. The role of polymer nanosurface roughness and submicron pores in improving bladder urothelial cell density and inhibiting calcium oxalate stone formation. Nanotechnology 2009; 20: 085104.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.