Show simple item record

Interactions between extracellular signal‐regulated kinase 1/2 and P38 Map kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity

dc.contributor.authorGe, Chunxien_US
dc.contributor.authorYang, Qianen_US
dc.contributor.authorZhao, Guishengen_US
dc.contributor.authorYu, Hongen_US
dc.contributor.authorKirkwood, Keith L.en_US
dc.contributor.authorFranceschi, Renny T.en_US
dc.date.accessioned2012-03-16T15:57:55Z
dc.date.available2013-05-01T17:24:40Zen_US
dc.date.issued2012-03en_US
dc.identifier.citationGe, Chunxi; Yang, Qian; Zhao, Guisheng; Yu, Hong; Kirkwood, Keith L; Franceschi, Renny T (2012). "Interactions between extracellular signal‐regulated kinase 1/2 and P38 Map kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity." Journal of Bone and Mineral Research 27(3): 538-551. <http://hdl.handle.net/2027.42/90254>en_US
dc.identifier.issn0884-0431en_US
dc.identifier.issn1523-4681en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90254
dc.description.abstractRUNX2, a key transcription factor for osteoblast differentiation, is regulated by ERK1/2 and p38 MAP kinase‐mediated phosphorylation. However, the specific contribution of each kinase to RUNX2‐dependent transcription is not known. Here we investigate ERK and p38 regulation of RUNX2 using a unique P‐RUNX2‐specific antibody. Both MAP kinases stimulated RUNX2 Ser319 phosphorylation and transcriptional activity. However, a clear preference for ERK1 versus p38α/β was found when the ability of these MAPKs to phosphorylate and activate RUNX2 was compared. Similarly, ERK1 preferentially bound to a consensus MAPK binding site on RUNX2 that was essential for the activity of either kinase. To assess the relative contribution of ERK1/2 and p38 to osteoblast gene expression, MC3T3‐E1 preosteoblast cells were grown in control or ascorbic acid (AA)‐containing medium ± BMP2/7. AA‐induced gene expression, which requires collagen matrix synthesis, was associated with parallel increases in P‐ERK and RUNX2‐S319‐P in the absence of any changes in P‐p38. This response was blocked by ERK, but not p38, inhibition. Significantly, in the presence of AA, BMP2/7 synergistically stimulated RUNX2 S319 phosphorylation and transcriptional activity without affecting total RUNX2 and this response was totally dependent on ERK/MAPK activity. In contrast, although p38 inhibition partially blocked BMP‐dependent transcription, it did not affect RUNX2 S319 phosphorylation, suggesting the involvement of other phosphorylation sites and/or transcription factors in this response. Based on this work, we conclude that extracellular matrix and BMP regulation of RUNX2 phosphorylation and transcriptional activity in osteoblasts is predominantly mediated by ERK rather than p38 MAPKs. © 2012 American Society for Bone and Mineral Research.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherMAPKen_US
dc.subject.otherRUNX2en_US
dc.subject.otherPHOSPHORYLATIONen_US
dc.subject.otherTRANSCRIPTIONen_US
dc.subject.otherOSTEOBLASTen_US
dc.titleInteractions between extracellular signal‐regulated kinase 1/2 and P38 Map kinase pathways in the control of RUNX2 phosphorylation and transcriptional activityen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialitiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Periodontics and Oral Medicine, University of Michigan School of Dentistry, 1011 N. University Ave., Ann Arbor, MI 48109‐1078, USA.en_US
dc.contributor.affiliationumDepartment of Biological Chemistry, School of Medicine, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Craniofacial Biology and the Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USAen_US
dc.identifier.pmid22072425en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90254/1/561_ftp.pdf
dc.identifier.doi10.1002/jbmr.561en_US
dc.identifier.sourceJournal of Bone and Mineral Researchen_US
dc.identifier.citedreferenceYang SH, Whitmarsh AJ, Davis RJ, Sharrocks AD. Differential targeting of MAP kinases to the ETS‐domain transcription factor Elk‐1. EMBO J. 1998; 17 ( 6 ): 1740 – 9.en_US
dc.identifier.citedreferenceLi Y, Ge C, Franceschi RT. Differentiation‐dependent association of phosphorylated extracellular signal‐regulated kinase with the chromatin of osteoblast‐related genes. J Bone Miner Res. 2010; 25 ( 1 ): 154 – 63.en_US
dc.identifier.citedreferenceGe C, Xiao G, Jiang D, Franceschi RT. Critical role of the extracellular signal‐regulated kinase‐MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol. 2007; 176 ( 5 ): 709 – 18.en_US
dc.identifier.citedreferenceMatsushita T, Chan YY, Kawanami A, Balmes G, Landreth GE, Murakami S. Extracellular signal‐regulated kinase 1 (ERK1) and ERK2 play essential roles in osteoblast differentiation and in supporting osteoclastogenesis. Mol Cell Biol. 2009; 29 ( 21 ): 5843 – 57.en_US
dc.identifier.citedreferenceGreenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park JM, Arthur S, Xie M, Schneider MD, Zhai B, Gygi S, Davis R, Glimcher LH. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest. 2010; 120 ( 7 ): 2457 – 73.en_US
dc.identifier.citedreferenceShim JH, Greenblatt MB, Xie M, Schneider MD, Zou W, Zhai B, Gygi S, Glimcher LH. TAK1 is an essential regulator of BMP signalling in cartilage. EMBO J. 2009; 28 ( 14 ): 2028 – 41.en_US
dc.identifier.citedreferenceDucy P, Karsenty G. Two distinct osteoblast‐specific cis‐acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol. 1995; 15 ( 4 ): 1858 – 69.en_US
dc.identifier.citedreferenceThirunavukkarasu K, Mahajan M, McLarren KW, Stifani S, Karsenty G. Two domains unique to osteoblast‐specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfbeta. Mol Cell Biol. 1998; 18 ( 7 ): 4197 – 208.en_US
dc.identifier.citedreferenceStewart S, Sundaram M, Zhang Y, Lee J, Han M, Guan KL. Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol Cell Biol. 1999; 19 ( 8 ): 5523 – 34.en_US
dc.identifier.citedreferenceZheng CF, Guan KL. Properties of MEKs, the kinases that phosphorylate and activate the extracellular signal‐regulated kinases. J Biol Chem. 1993; 268 ( 32 ): 23933 – 9.en_US
dc.identifier.citedreferenceHuang S, Jiang Y, Li Z, Nishida E, Mathias P, Lin S, Ulevitch RJ, Nemerow GR, Han J. Apoptosis signaling pathway in T cells is composed of ICE/Ced‐3 family proteases and MAP kinase kinase 6b. Immunity. 1997; 6 ( 6 ): 739 – 49.en_US
dc.identifier.citedreferenceHardy S, Kitamura M, Harris‐Stansil T, Dai Y, Phipps ML. Construction of adenovirus vectors through Cre‐lox recombination. J Virol. 1997; 71 ( 3 ): 1842 – 9.en_US
dc.identifier.citedreferenceXiao G, Cui Y, Ducy P, Karsenty G, Franceschi RT. Ascorbic acid‐dependent activation of the osteocalcin promoter in MC3T3‐E1 preosteoblasts: requirement for collagen matrix synthesis and the presence of an intact OSE2 sequence. Mol Endocrinol. 1997; 11 ( 8 ): 1103 – 13.en_US
dc.identifier.citedreferenceSharrocks AD, Yang SH, Galanis A. Docking domains and substrate‐specificity determination for MAP kinases. Trends Biochem Sci. 2000; 25 ( 9 ): 448 – 53.en_US
dc.identifier.citedreferenceZhang Y, Su J, Yu J, Bu X, Ren T, Liu X, Yao L. An essential role of discoidin domain receptor 2 (DDR2) in osteoblast differentiation and chondrocyte maturation via modulation of Runx2 activation. J Bone Miner Res. 2010; 26 ( 3 ): 604 – 17.en_US
dc.identifier.citedreferenceSuzawa M, Tamura Y, Fukumoto S, Miyazono K, Fujita T, Kato S, Takeuchi Y. Stimulation of Smad1 transcriptional activity by Ras‐extracellular signal‐regulated kinase pathway: a possible mechanism for collagen‐dependent osteoblastic differentiation. J Bone Miner Res. 2002; 17 ( 2 ): 240 – 8.en_US
dc.identifier.citedreferenceFranceschi RT, Iyer BS. Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3‐E1 cells. J Bone Miner Res. 1992; 7 ( 2 ): 235 – 46.en_US
dc.identifier.citedreferenceKefaloyianni E, Gaitanaki C, Beis I. ERK1/2 and p38‐MAPK signalling pathways, through MSK1, are involved in NF‐kappaB transactivation during oxidative stress in skeletal myoblasts. Cell Signal. 2006; 18 ( 12 ): 2238 – 51.en_US
dc.identifier.citedreferenceDeak M, Clifton AD, Lucocq LM, Alessi DR. Mitogen‐ and stress‐activated protein kinase‐1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 1998; 17 ( 15 ): 4426 – 41.en_US
dc.identifier.citedreferenceNishimura M, Shin MS, Singhirunnusorn P, Suzuki S, Kawanishi M, Koizumi K, Saiki I, Sakurai H. TAK1‐mediated serine/threonine phosphorylation of epidermal growth factor receptor via p38/extracellular signal‐regulated kinase: NF‐{kappa}B‐independent survival pathways in tumor necrosis factor alpha signaling. Mol Cell Biol. 2009; 29 ( 20 ): 5529 – 39.en_US
dc.identifier.citedreferenceAkella R, Moon TM, Goldsmith EJ. Unique MAP Kinase binding sites. Biochim Biophys Acta. 2008; 1784 ( 1 ): 48 – 55.en_US
dc.identifier.citedreferenceHotokezaka H, Sakai E, Kanaoka K, Saito K, Matsuo K, Kitaura H, Yoshida N, Nakayama K. U0126 and PD98059, specific inhibitors of MEK, accelerate differentiation of RAW264.7 cells into osteoclast‐like cells. J Biol Chem. 2002; 277 ( 49 ): 47366 – 72.en_US
dc.identifier.citedreferencePrasadam I, van Gennip S, Friis T, Shi W, Crawford R, Xiao Y. ERK‐1/2 and p38 in the regulation of hypertrophic changes of normal articular cartilage chondrocytes induced by osteoarthritic subchondral osteoblasts. Arthritis Rheum. 2010; 62 ( 5 ): 1349 – 60.en_US
dc.identifier.citedreferenceXing W, Singgih A, Kapoor A, Alarcon CM, Baylink DJ, Mohan S. Nuclear factor‐E2‐related factor‐1 mediates ascorbic acid induction of osterix expression via interaction with antioxidant‐responsive element in bone cells. J Biol Chem. 2007; 282 ( 30 ): 22052 – 61.en_US
dc.identifier.citedreferenceAsahina I, Sampath TK, Nishimura I, Hauschka PV. Human osteogenic protein‐1 induces both chondroblastic and osteoblastic differentiation of osteoprogenitor cells derived from newborn rat calvaria. J Cell Biol. 1993; 123 ( 4 ): 921 – 33.en_US
dc.identifier.citedreferenceHassan MQ, Tare RS, Lee SH, Mandeville M, Morasso MI, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB. BMP2 commitment to the osteogenic lineage involves activation of Runx2 by DLX3 and a homeodomain transcriptional network. J Biol Chem. 2006; 281 ( 52 ): 40515 – 26.en_US
dc.identifier.citedreferenceUlsamer A, Ortuno MJ, Ruiz S, Susperregui AR, Osses N, Rosa JL, Ventura F. BMP‐2 induces Osterix expression through up‐regulation of Dlx5 and its phosphorylation by p38. J Biol Chem. 2008; 283 ( 7 ): 3816 – 26.en_US
dc.identifier.citedreferenceOrtuno MJ, Ruiz‐Gaspa S, Rodriguez‐Carballo E, Susperregui AR, Bartrons R, Rosa JL, Ventura F. p38 regulates expression of osteoblast‐specific genes by phosphorylation of osterix. J Biol Chem. 2010; 285 ( 42 ): 31985 – 94.en_US
dc.identifier.citedreferenceKoga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, Takayanagi H. NFAT and Osterix cooperatively regulate bone formation. Nat Med. 2005; 11 ( 8 ): 880 – 5.en_US
dc.identifier.citedreferenceDucy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G. A Cbfa1‐dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev. 1999; 13 ( 8 ): 1025 – 36.en_US
dc.identifier.citedreferenceKomori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997; 89 ( 5 ): 755 – 64.en_US
dc.identifier.citedreferenceOtto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997; 89 ( 5 ): 765 – 71.en_US
dc.identifier.citedreferenceNakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B. The novel zinc finger‐containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002; 108 ( 1 ): 17 – 29.en_US
dc.identifier.citedreferenceBialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, Wu H, Yu K, Ornitz DM, Olson EN, Justice MJ, Karsenty G. A twist code determines the onset of osteoblast differentiation. Dev Cell. 2004; 6 ( 3 ): 423 – 35.en_US
dc.identifier.citedreferenceTou L, Quibria N, Alexander JM. Transcriptional regulation of the human Runx2/Cbfa1 gene promoter by bone morphogenetic protein‐7. Mol Cell Endocrinol. 2003; 205 ( 1–2 ): 121 – 9.en_US
dc.identifier.citedreferenceXiao G, Jiang D, Thomas P, Benson MD, Guan K, Karsenty G, Franceschi RT. MAPK pathways activate and phosphorylate the osteoblast‐specific transcription factor, Cbfa1. J Biol Chem. 2000; 275 ( 6 ): 4453 – 9.en_US
dc.identifier.citedreferenceFranceschi RT, Ge C, Xiao G, Roca H, Jiang D. Transcriptional regulation of osteoblasts. Ann NY Acad Sci. 2007; 1116: 196 – 207.en_US
dc.identifier.citedreferenceXiao G, Jiang D, Gopalakrishnan R, Franceschi RT. Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J Biol Chem. 2002; 277 ( 39 ): 36181 – 7.en_US
dc.identifier.citedreferenceHurley MM, Marcello K, Abreu C, Kessler M. Signal transduction by basic fibroblast growth factor in rat osteoblastic Py1a cells. J Bone Miner Res. 1996; 11 ( 9 ): 1256 – 63.en_US
dc.identifier.citedreferenceTakeuchi Y, Suzawa M, Kikuchi T, Nishida E, Fujita T, Matsumoto T. Differentiation and transforming growth factor‐beta receptor down‐regulation by collagen‐alpha2beta1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. J Biol Chem. 1997; 272 ( 46 ): 29309 – 16.en_US
dc.identifier.citedreferenceXiao G, Wang D, Benson MD, Karsenty G, Franceschi RT. Role of the alpha2‐integrin in osteoblast‐specific gene expression and activation of the Osf2 transcription factor. J Biol Chem. 1998; 273 ( 49 ): 32988 – 94.en_US
dc.identifier.citedreferenceXiao G, Gopalakrishnan R, Jiang D, Reith E, Benson MD, Franceschi RT. Bone morphogenetic proteins, extracellular matrix, and mitogen‐activated protein kinase signaling pathways are required for osteoblast‐specific gene expression and differentiation in MC3T3‐E1 cells. J Bone Miner Res. 2002; 17 ( 1 ): 101 – 10.en_US
dc.identifier.citedreferenceKhatiwala CB, Kim PD, Peyton SR, Putnam AJ. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J Bone Miner Res. 2009; 24 ( 5 ): 886 – 98.en_US
dc.identifier.citedreferenceYou J, Reilly GC, Zhen X, Yellowley CE, Chen Q, Donahue HJ, Jacobs CR. Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen‐activated protein kinase in MC3T3‐E1 osteoblasts. J Biol Chem. 2001; 276 ( 16 ): 13365 – 71.en_US
dc.identifier.citedreferenceBoutahar N, Guignandon A, Vico L, Lafage‐Proust MH. Mechanical strain on osteoblasts activates autophosphorylation of focal adhesion kinase and proline‐rich tyrosine kinase 2 tyrosine sites involved in ERK activation. J Biol Chem. 2004; 279 ( 29 ): 30588 – 99.en_US
dc.identifier.citedreferenceGe C, Xiao G, Jiang D, Yang Q, Hatch NE, Roca H, Franceschi RT. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem. 2009; 284 ( 47 ): 32533 – 43.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.