Show simple item record

Beyond DNA origami: the unfolding prospects of nucleic acid nanotechnology

dc.contributor.authorMichelotti, Nicoleen_US
dc.contributor.authorJohnson‐buck, Alexanderen_US
dc.contributor.authorManzo, Anthony J.en_US
dc.contributor.authorWalter, Nils G.en_US
dc.date.accessioned2012-03-16T15:58:30Z
dc.date.available2013-05-01T17:24:41Zen_US
dc.date.issued2012-03en_US
dc.identifier.citationMichelotti, Nicole; Johnson‐buck, Alexander ; Manzo, Anthony J.; Walter, Nils G. (2012). "Beyond DNA origami: the unfolding prospects of nucleic acid nanotechnology." Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 4(2): 139-152. <http://hdl.handle.net/2027.42/90282>en_US
dc.identifier.issn1939-5116en_US
dc.identifier.issn1939-0041en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90282
dc.description.abstractNucleic acid nanotechnology exploits the programmable molecular recognition properties of natural and synthetic nucleic acids to assemble structures with nanometer‐scale precision. In 2006, DNA origami transformed the field by providing a versatile platform for self‐assembly of arbitrary shapes from one long DNA strand held in place by hundreds of short, site‐specific (spatially addressable) DNA ‘staples’. This revolutionary approach has led to the creation of a multitude of two‐dimensional and three‐dimensional scaffolds that form the basis for functional nanodevices. Not limited to nucleic acids, these nanodevices can incorporate other structural and functional materials, such as proteins and nanoparticles, making them broadly useful for current and future applications in emerging fields such as nanomedicine, nanoelectronics, and alternative energy. WIREs Nanomed Nanobiotechnol 2012, 4:139–152. doi: 10.1002/wnan.170 For further resources related to this article, please visit the WIREs website .en_US
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.titleBeyond DNA origami: the unfolding prospects of nucleic acid nanotechnologyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Physics, University of Michigan, Ann Arbor, MI, USAen_US
dc.identifier.pmid22131292en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90282/1/170_ftp.pdf
dc.identifier.doi10.1002/wnan.170en_US
dc.identifier.sourceWiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnologyen_US
dc.identifier.citedreferenceLee SK, Chou H, Ham TS, Lee TS, Keasling JD. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 2008, 19: 556 – 563.en_US
dc.identifier.citedreferenceTour JM, Kittrell C, Colvin VL. Green carbon as a bridge to renewable energy. Nat Mater 2010, 9: 871 – 874.en_US
dc.identifier.citedreferenceSolomon S, Plattner GK, Knutti R, Friedlingstein P. Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci U S A 2009, 106: 1704 – 1709.en_US
dc.identifier.citedreferenceDelebecque CJ, Lindner AB, Silver PA, Aldaye FA. Organization of intracellular reactions with rationally designed RNA assemblies. Science 2011, 333: 470 – 474.en_US
dc.identifier.citedreferenceMoghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005, 19: 311 – 330.en_US
dc.identifier.citedreferenceBrandenburg B, Lee LY, Lakadamyali M, Rust MJ, Zhuang X, Hogle JM. Imaging poliovirus entry in live cells. PLoS Biol 2007, 5: e183.en_US
dc.identifier.citedreferenceBenenson Y, Gil B, Ben‐Dor U, Adar R, Shapiro E. An autonomous molecular computer for logical control of gene expression. Nature 2004, 429: 423 – 429.en_US
dc.identifier.citedreferenceKrishna H, Caruthers MH. Solid‐phase synthesis, thermal denaturation studies, nuclease resistance, and cellular uptake of (oligodeoxyribonucleoside)methylborane phosphine‐DNA chimeras. J Am Chem Soc 2011, 133: 9844 – 9854.en_US
dc.identifier.citedreferenceRueda D, Walter NG. Single molecule fluorescence control for nanotechnology. J Nanosci Nanotechnol 2005, 5: 1990 – 2000.en_US
dc.identifier.citedreferenceWalter NG, Huang CY, Manzo AJ, Sobhy MA. Do‐it‐yourself guide: how to use the modern single‐molecule toolkit. Nat Methods 2008, 5: 475 – 489.en_US
dc.identifier.citedreferencevon Delius M, Leigh D. Walking molecules. Chem Soc Rev 2011, 40: 3656 – 3676.en_US
dc.identifier.citedreferenceFaisal A, Alison P, Hanadi S. Assembling materials with DNA as the guide. Science 2008, 321: 1795 – 1799en_US
dc.identifier.citedreferencehttp://en.wikipedia.org/wiki/DNA_nanotechnologyen_US
dc.identifier.citedreferencehttp://en.wikipedia.org/wiki/Fuzzy_logicen_US
dc.identifier.citedreferencehttp://en.wikipedia.org/wiki/Nanoelectronicsen_US
dc.identifier.citedreferencehttp://en.wikipedia.org/wiki/Nanomedicineen_US
dc.identifier.citedreferenceHu Y, Fine DH, Tasciotti E, Bouamrani A, Ferrari M. Nanodevices in diagnostics. WIREs Nanomed Nanobiotechnol 2011, 3: 11 – 32.en_US
dc.identifier.citedreferenceNadrian S. DNA in a material world. Nature 2003, 421: 427 – 431.en_US
dc.identifier.citedreferenceNadrian S. Nanomaterials based on DNA. Annu Rev Biochem 2010, 79: 65 – 87.en_US
dc.identifier.citedreferenceRothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440: 297 – 302.en_US
dc.identifier.citedreferenceYang D, Campolongo MJ, Nhi Tran TN, Ruiz RC, Kahn JS, Luo D. Novel DNA materials and their applications. WIREs Nanomed Nanobiotechnol 2010, 2: 648 – 669.en_US
dc.identifier.citedreferenceSeeman NC. DNA in a material world. Nature 2003, 421: 427 – 431.en_US
dc.identifier.citedreferenceVoet D, Voet JG. Biochemistry. 4th ed. New York: John Wiley & Sons; 2011.en_US
dc.identifier.citedreferencePaabo S, Poinar H, Serre D, Jaenicke‐Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M. Genetic analyses from ancient DNA. Annu Rev Genet 2004, 38: 645 – 679.en_US
dc.identifier.citedreferenceMattick JS, Taft RJ, Faulkner GJ. A global view of genomic information—moving beyond the gene and the master regulator. Trends Genet 2010, 26: 21 – 28.en_US
dc.identifier.citedreferenceMarek MS, Johnson‐Buck A, Walter NG. The shape‐shifting quasispecies of RNA: one sequence, many functional folds. Phys Chem Chem Phys 2011, 13: 11524 – 11537.en_US
dc.identifier.citedreferenceFrank J, Gonzalez RL Jr. Structure and dynamics of a processive Brownian motor: the translating ribosome. Annu Rev Biochem 2010, 79: 381 – 412.en_US
dc.identifier.citedreferenceWill CL, Luhrmann R. Spliceosome structure and function. Cold Spring Harb Perspect Biol 2011, 3:a003707.en_US
dc.identifier.citedreferenceNewman AJ, Nagai K. Structural studies of the spliceosome: blind men and an elephant. Curr Opin Struct Biol 2010, 20: 82 – 89.en_US
dc.identifier.citedreferenceMattick JS. The genetic signatures of noncoding RNAs. PLoS Genet 2009, 5: e1000459.en_US
dc.identifier.citedreferenceSeeman NC. Nanomaterials based on DNA. Annu Rev Biochem 2010, 79: 65 – 87.en_US
dc.identifier.citedreferenceRothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440: 297 – 302.en_US
dc.identifier.citedreferenceSeeman NC. An overview of structural DNA nanotechnology. Mol Biotechnol 2007, 37: 246 – 257.en_US
dc.identifier.citedreferenceAldaye FA, Palmer AL, Sleiman HF. Assembling materials with DNA as the guide. Science 2008, 321: 1795 – 1799.en_US
dc.identifier.citedreferenceNangreave J, Han D, Liu Y, Yan H. DNA origami: a history and current perspective. Curr Opin Chem Biol 2010, 14: 608 – 615.en_US
dc.identifier.citedreferenceShih WM, Lin C. Knitting complex weaves with DNA origami. Curr Opin Struct Biol 2010, 20: 276 – 282.en_US
dc.identifier.citedreferenceTorring T, Voigt NV, Nangreave J, Yan H, Gothelf KV. DNA origami: a quantum leap for self‐assembly of complex structures. Chem Soc Rev. In press.en_US
dc.identifier.citedreferenceWatson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953, 171: 737 – 738.en_US
dc.identifier.citedreferenceWilliams NH, Takasaki B, Wall M, Chin J. Structure and nuclease activity of simple dinuclear metal complexes: quantitative dissection of the role of metal ions. Acc Chem Res 1999, 32: 485 – 493.en_US
dc.identifier.citedreferenceWang S, Kool ET. Origins of the large differences in stability of DNA and RNA helices: C‐5 methyl and 2′‐hydroxyl effects. Biochemistry 1995, 34: 4125 – 4132.en_US
dc.identifier.citedreferenceLipps HJ, Rhodes D. G‐quadruplex structures: in vivo evidence and function. Trends Cell Biol 2009, 19: 414 – 422.en_US
dc.identifier.citedreferenceGrindley ND, Whiteson KL, Rice PA. Mechanisms of site‐specific recombination. Annu Rev Biochem 2006, 75: 567 – 605.en_US
dc.identifier.citedreferenceSchones DE, Zhao K. Genome‐wide approaches to studying chromatin modifications. Nat Rev Genet 2008, 9: 179 – 191.en_US
dc.identifier.citedreferenceStrahl BD, Allis CD. The language of covalent histone modifications. Nature 2000, 403: 41 – 45.en_US
dc.identifier.citedreferenceChen J, Darst SA, Thirumalai D. Promoter melting triggered by bacterial RNA polymerase occurs in three steps. Proc Natl Acad Sci U S A 2010, 107: 12523 – 12528.en_US
dc.identifier.citedreferenceCrick F. Central dogma of molecular biology. Nature 1970, 227: 561 – 563.en_US
dc.identifier.citedreferenceDavidson BL, McCray PB Jr. Current prospects for RNA interference‐based therapies. Nat Rev Genet 2011, 12: 329 – 340.en_US
dc.identifier.citedreferenceAl‐Hashimi HM, Walter NG. RNA dynamics: it is about time. Curr Opin Struct Biol 2008, 18: 321 – 329.en_US
dc.identifier.citedreferenceDambach MD, Winkler WC. Expanding roles for metabolite‐sensing regulatory RNAs. Curr Opin Microbiol 2009, 12: 161 – 169.en_US
dc.identifier.citedreferenceNissen P, Hansen J, Ban N, Moore PB, Steitz TA. The structural basis of ribosome activity in peptide bond synthesis. Science 2000, 289: 920 – 930.en_US
dc.identifier.citedreferenceFerre‐D'Amare AR, Scott WG. Small self‐cleaving ribozymes. Cold Spring Harb Perspect Biol 2010, 2: a003574.en_US
dc.identifier.citedreferenceEhrlich M, Gama‐Sosa MA, Carreira LH, Ljungdahl LG, Kuo KC, Gehrke CW. DNA methylation in thermophilic bacteria: N4‐methylcytosine, 5‐methylcytosine, and N6‐methyladenine. Nucleic Acids Res 1985, 13: 1399 – 1412.en_US
dc.identifier.citedreferenceJones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science 2001, 293: 1068 – 1070.en_US
dc.identifier.citedreferenceCampbell MA, Wengel J. Locked vs. unlocked nucleic acids (LNA vs. UNA): contrasting structures work towards common therapeutic goals. Chem Soc Rev 2011.en_US
dc.identifier.citedreferenceBraasch DA, Corey DR. Locked nucleic acid (LNA): fine‐tuning the recognition of DNA and RNA. Chem Biol 2001, 8: 1 – 7.en_US
dc.identifier.citedreferenceRana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 2007, 8: 23 – 36.en_US
dc.identifier.citedreferenceEgholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE. PNA hybridizes to complementary oligonucleotides obeying the Watson‐Crick hydrogen‐bonding rules. Nature 1993, 365: 566 – 568.en_US
dc.identifier.citedreferenceWilliams KA, Veenhuizen PT, de la Torre BG, Eritja R, Dekker C. Nanotechnology: carbon nanotubes with DNA recognition. Nature 2002, 420: 761.en_US
dc.identifier.citedreferenceLukeman PS, Mittal AC, Seeman NC. Two dimensional PNA/DNA arrays: estimating the helicity of unusual nucleic acid polymers. Chem Commun 2004, 1694 – 1695.en_US
dc.identifier.citedreferenceChen F, Yang Z, Yan M, Alvarado JB, Wang G, Benner SA. Recognition of an expanded genetic alphabet by type‐II restriction endonucleases and their application to analyze polymerase fidelity. Nucleic Acids Res 2011, 39: 3949 – 3961.en_US
dc.identifier.citedreferencePetrillo ML, Newton CJ, Cunningham RP, Ma RI, Kallenbach NR, Seeman NC. The ligation and flexibility of 4‐arm DNA junctions. Biopolymers 1988, 27: 1337 – 1352.en_US
dc.identifier.citedreferenceHolliday R. Mechanism for gene conversion in fungi. Genet Res 1964, 5: 282 – 304.en_US
dc.identifier.citedreferenceFu TJ, Seeman NC. DNA double‐crossover molecules. Biochemistry 1993, 32: 3211 – 3220.en_US
dc.identifier.citedreferenceLaBean TH, Yan H, Kopatsch J, Liu FR, Winfree E, Reif JH, Seeman NC. Construction, analysis, ligation, and self‐assembly of DNA triple crossover complexes. J Am Chem Soc 2000, 122: 1848 – 1860.en_US
dc.identifier.citedreferenceShih WM, Quispe JD, Joyce GF. A 1.7‐kilobase single‐stranded DNA that folds into a nanoscale octahedron. Nature 2004, 427: 618 – 621.en_US
dc.identifier.citedreferenceHan D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H. DNA origami with complex curvatures in three‐dimensional space. Science 2011, 332: 342 – 346.en_US
dc.identifier.citedreferenceWoo S, Rothemund PW. Programmable molecular recognition based on the geometry of DNA nanostructures. Nat Chem 2011, 3: 620 – 627.en_US
dc.identifier.citedreferenceLund K, Manzo AJ, Dabby N, Michelotti N, Johnson‐Buck A, Nangreave J, Taylor S, Pei R, Stojanovic MN, Walter NG, et al. Molecular robots guided by prescriptive landscapes. Nature 2010, 465: 206 – 210.en_US
dc.identifier.citedreferenceGu HZ, Chao J, Xiao SJ, Seeman NC. A proximity‐based programmable DNA nanoscale assembly line. Nature 2010, 465: 202 – 286.en_US
dc.identifier.citedreferenceHe Y, Liu DR. Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. Nat Nanotechnol 2010, 5: 778 – 782.en_US
dc.identifier.citedreferenceMaune HT, Han SP, Barish RD, Bockrath M, Goddard WA, Rothemund PWK, Winfree E. Self‐assembly of carbon nanotubes into two‐dimensional geometries using DNA origami templates. Nat Nanotechnol 2010, 5: 61 – 66.en_US
dc.identifier.citedreferenceEskelinen AP, Kuzyk A, Kaltiaisenaho TK, Timmermans MY, Nasibulin AG, Kauppinen EI, Torma P. Assembly of single‐walled carbon nanotubes on DNA‐origami templates through streptavidin‐biotin interaction. Small 2011, 7: 746 – 750.en_US
dc.identifier.citedreferenceMichelotti N, de Silva C, Johnson‐Buck AE, Manzo AJ, Walter NG. A bird's eye view tracking slow nanometer‐scale movements of single molecular nano‐assemblies. Methods Enzymol 2010, 475: 121 – 148.en_US
dc.identifier.citedreferencevon Delius M, Leigh DA. Walking molecules. Chem Soc Rev 2011, 40: 3656 – 3676.en_US
dc.identifier.citedreferenceQian L, Winfree E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 2011, 332: 1196 – 1201.en_US
dc.identifier.citedreferenceBoeneman K, Prasuhn DE, Blanco‐Canosa JB, Dawson PE, Melinger JS, Ancona M, Stewart MH, Susumu K, Huston A, Medintz IL. Self‐assembled quantum dot‐sensitized multivalent DNA photonic wires. J Am Chem Soc 2010, 132: 18177 – 18190.en_US
dc.identifier.citedreferenceHung AM, Micheel CM, Bozano LD, Osterbur LW, Wallraff GM, Cha JN. Large‐area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat Nanotechnol 2010, 5: 121 – 126.en_US
dc.identifier.citedreferenceLin CX, Ke YG, Liu Y, Mertig M, Gu J, Yan H. Functional DNA nanotube arrays: bottom‐up meets top‐down. Angew Chem Int Ed Engl 2007, 46: 6089 – 6092.en_US
dc.identifier.citedreferenceNiemeyer CM, Koehler J, Wuerdemann C. DNA‐directed assembly of bienzymic complexes from in vivo biotinylated NAD(P)H: FMN oxidoreductase and luciferase. Chembiochem 2002, 3: 242 – 245.en_US
dc.identifier.citedreferenceRuiz‐Carretero A, Janssen PGA, Stevens AL, Surin M, Herz LM, Schenning APHJ. Directing energy transfer in discrete one‐dimensional oligonucleotide‐templated assemblies. Chem Commun 2011, 47: 884 – 886.en_US
dc.identifier.citedreferenceStein IH, Steinhauer C, Tinnefeld P. Single‐molecule four‐color FRET visualizes energy‐transfer paths on DNA origami. J Am Chem Soc 2011, 133: 4193 – 4195.en_US
dc.identifier.citedreferenceSingh A, Tolev M, Meng M, Klenin K, Plietzsch O, Schilling CI, Muller T, Nieger M, Brase S, Wenzel W, et al. Branched DNA that forms a solid at 95 degrees C. Angew Chem Int Ed Engl 2011, 50: 3227 – 3231.en_US
dc.identifier.citedreferenceKwak M, Herrmann A. Nucleic acid/organic polymer hybrid materials: synthesis, superstructures, and applications. Angew Chem Int Ed Engl 2010, 49: 8574 – 8587.en_US
dc.identifier.citedreferenceOhno H, Kobayashi T, Kabata R, Endo K, Iwasa T, Yoshimura SH, Takeyasu K, Inoue T, Saito H. Synthetic RNA‐protein complex shaped like an equilateral triangle. Nat Nanotechnol 2011, 6: 115 – 119.en_US
dc.identifier.citedreferenceHung AM, Noh H, Cha JN. Recent advances in DNA‐based directed assembly on surfaces. Nanoscale 2010, 2: 2530 – 2537.en_US
dc.identifier.citedreferenceKershner RJ, Bozano LD, Micheel CM, Hung AM, Fornof AR, Cha JN, Rettner CT, Bersani M, Frommer J, Rothemund PW, et al. Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat Nanotechnol 2009, 4: 557 – 561.en_US
dc.identifier.citedreferenceStojanovic MN, Mitchell TE, Stefanovic D. Deoxyribozyme‐based logic gates. J Am Chem Soc 2002, 124: 3555 – 3561.en_US
dc.identifier.citedreferenceStojanovic MN, Stefanovic D. A deoxyribozyme‐based molecular automaton. Nat Biotechnol 2003, 21: 1069 – 1074.en_US
dc.identifier.citedreferencePei R, Matamoros E, Liu M, Stefanovic D, Stojanovic MN. Training a molecular automaton to play a game. Nat Nanotechnol 2010, 5: 773 – 777.en_US
dc.identifier.citedreferenceQian L, Winfree E, Bruck J. Neural network computation with DNA strand displacement cascades. Nature 2011, 475: 368 – 372.en_US
dc.identifier.citedreferenceMorris MK, Saez‐Rodriguez J, Sorger PK, Lauffenburger DA. Logic‐based models for the analysis of cell signaling networks. Biochemistry 2010, 49: 3216 – 3224.en_US
dc.identifier.citedreferenceOzbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 2006, 311: 189 – 193.en_US
dc.identifier.citedreferenceAnker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater 2008, 7: 442 – 453.en_US
dc.identifier.citedreferenceTan SJ, Campolongo MJ, Luo D, Cheng W. Building plasmonic nanostructures with DNA. Nat Nanotechnol 2011, 6: 268 – 276.en_US
dc.identifier.citedreferenceDing B, Deng Z, Yan H, Cabrini S, Zuckermann RN, Bokor J. Gold nanoparticle self‐similar chain structure organized by DNA origami. J Am Chem Soc 2010, 132: 3248 – 3249.en_US
dc.identifier.citedreferenceLo PK, Karam P, Aldaye FA, McLaughlin CK, Hamblin GD, Cosa G, Sleiman HF. Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nat Chem 2010, 2: 319 – 328.en_US
dc.identifier.citedreferenceRothemund PW, Ekani‐Nkodo A, Papadakis N, Kumar A, Fygenson DK, Winfree E. Design and characterization of programmable DNA nanotubes. J Am Chem Soc 2004, 126: 16344 – 16352.en_US
dc.identifier.citedreferencePalchetti I, Mascini M. Nucleic acid biosensors for environmental pollution monitoring. Analyst 2008, 133: 846 – 854.en_US
dc.identifier.citedreferenceSekella PT, Rueda D, Walter NG. A biosensor for theophylline based on fluorescence detection of ligand‐induced hammerhead ribozyme cleavage. RNA 2002, 8: 1242 – 1252.en_US
dc.identifier.citedreferenceModi S, Swetha MG, Goswami D, Gupta GD, Mayor S, Krishnan Y. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat Nanotechnol 2009, 4: 325 – 330.en_US
dc.identifier.citedreferenceWang J. DNA biosensors based on peptide nucleic acid (PNA) recognition layers. A review. Biosens Bioelectron 1998, 13: 757 – 762.en_US
dc.identifier.citedreferenceMartinez K, Estevez MC, Wu Y, Phillips JA, Medley CD, Tan W. Locked nucleic acid based beacons for surface interaction studies and biosensor development. Anal Chem 2009, 81: 3448 – 3454.en_US
dc.identifier.citedreferencePiunno PA, Krull UJ. Trends in the development of nucleic acid biosensors for medical diagnostics. Anal Bioanal Chem 2005, 381: 1004 – 1011.en_US
dc.identifier.citedreferenceKe Y, Lindsay S, Chang Y, Liu Y, Yan H. Self‐assembled water‐soluble nucleic acid probe tiles for label‐free RNA hybridization assays. Science 2008, 319: 180 – 183.en_US
dc.identifier.citedreferenceLiu HJ, Torring T, Dong MD, Rosen CB, Besenbacher F, Gothelf KV. DNA‐templated covalent coupling of G4 PAMAM dendrimers. J Am Chem Soc 2010, 132: 18054 – 18056.en_US
dc.identifier.citedreferenceCrawford JM, Townsend CA. New insights into the formation of fungal aromatic polyketides. Nat Rev Microbiol 2010, 8: 879 – 889.en_US
dc.identifier.citedreferenceAndrianantoandro E, Basu S, Karig DK, Weiss R. Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2006, 2: 2006.0028.en_US
dc.identifier.citedreferenceGibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 2010, 329: 52 – 56.en_US
dc.identifier.citedreferenceWilner OI, Shimron S, Weizmann Y, Wang ZG, Willner I. Self‐assembly of enzymes on DNA scaffolds: en route to biocatalytic cascades and the synthesis of metallic nanowires. Nano Lett 2009, 9: 2040 – 2043.en_US
dc.identifier.citedreferenceAndersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, Golas MM, Sander B, Stark H, Oliveira CL, et al. Self‐assembly of a nanoscale DNA box with a controllable lid. Nature 2009, 459: 73 – 76.en_US
dc.identifier.citedreferenceEndo M, Hidaka K, Kato T, Namba K, Sugiyama H. DNA prism structures constructed by folding of multiple rectangular arms. J Am Chem Soc 2009, 131: 15570 – 15571.en_US
dc.identifier.citedreferenceVenkataraman S, Dirks RM, Ueda CT, Pierce NA. Selective cell death mediated by small conditional RNAs. Proc Natl Acad Sci U S A 2010, 107: 16777 – 16782.en_US
dc.identifier.citedreferenceSurana S, Bhat JM, Koushika SP, Krishnan Y. An autonomous DNA nanomachine maps spatiotemporal pH changes in a multicellular living organism. Nat Commun 2011, 2: 340.en_US
dc.identifier.citedreferenceBhatia D, Surana S, Chakraborty S, Koushika SP, Krishnan Y. A synthetic icosahedral DNA‐based host‐cargo complex for functional in vivo imaging. Nat Commun 2011, 2: 339.en_US
dc.identifier.citedreferenceMei Q, Wei X, Su F, Liu Y, Youngbull C, Johnson R, Lindsay S, Yan H, Meldrum D. Stability of DNA origami nanoarrays in cell lysate. Nano Lett 2011, 11: 1477 – 1482.en_US
dc.identifier.citedreferenceLu W, Lieber CM. Nanoelectronics from the bottom up. Nat Mater 2007, 6: 841 – 850.en_US
dc.identifier.citedreferenceEngheta N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 2007, 317: 1698 – 1702.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.