Show simple item record

Amino Acid Requirements in Critically Ill Patients with Acute Kidney Injury Treated with Continuous Renal Replacement Therapy

dc.contributor.authorBtaiche, Imad F.en_US
dc.contributor.authorMohammad, Rima A.en_US
dc.contributor.authorAlaniz, Cesaren_US
dc.contributor.authorMueller, Bruce A.en_US
dc.date.accessioned2012-03-16T15:58:33Z
dc.date.available2012-03-16T15:58:33Z
dc.date.issued2008-05en_US
dc.identifier.citationBtaiche, Imad F.; Mohammad, Rima A.; Alaniz, Cesar; Mueller, Bruce A. (2008). "Amino Acid Requirements in Critically Ill Patients with Acute Kidney Injury Treated with Continuous Renal Replacement Therapy." Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 28(5). <http://hdl.handle.net/2027.42/90284>en_US
dc.identifier.issn0277-0008en_US
dc.identifier.issn1875-9114en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90284
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherNutritionen_US
dc.subject.otherCRRTen_US
dc.subject.otherAmino Acidsen_US
dc.subject.otherCritical Illnessen_US
dc.subject.otherAcute Kidney Injuryen_US
dc.subject.otherRenal Failureen_US
dc.subject.otherContinuous Renal Replacement Therapyen_US
dc.titleAmino Acid Requirements in Critically Ill Patients with Acute Kidney Injury Treated with Continuous Renal Replacement Therapyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, and the Department of Pharmacy Services, University of Michigan Hospitals and Health Centers, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherDivision of Pharmacy Practice, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, and Mount Sinai Hospital, New York, New Yorken_US
dc.identifier.pmid18447659en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90284/1/phco.28.5.600.pdf
dc.identifier.doi10.1592/phco.28.5.600en_US
dc.identifier.sourcePharmacotherapy: The Journal of Human Pharmacology and Drug Therapyen_US
dc.identifier.citedreferenceScheinkestel CD, Adams F, Mahony L,. Impact of increasing parenteral protein loads on amino acid levels and balance in critically ill anuric patients on continuous renal replacement therapy. Nutrition 2003; 19: 733 – 40.en_US
dc.identifier.citedreferenceFrankenfield DC, Badellino MM, Reynolds HN, Wiles CE, Siegel JH, Goodarzi S. Amino acid loss and plasma concentration during continuous hemodiafiltration. JPEN J Parenter Enteral Nutr 1993; 17: 551 – 61.en_US
dc.identifier.citedreferenceBellomo R, Martin H, Parkin G, Love J, Kearley Y, Boyce N. Continuous arteriovenous haemodiafiltration in the critically ill: influence on major nutrient balances. Intensive Care Med 1991; 17: 399 – 402.en_US
dc.identifier.citedreferenceMacias WL, Alaka KJ, Murphy MH, Miller ME, Clark WR, Mueller BA. Impact of the nutritional regimen on protein catabolism and nitrogen balance in patients with acute renal failure. JPEN J Parenter Enteral Nutr 1996; 20: 56 – 62.en_US
dc.identifier.citedreferenceScheinkestel CD, Kar L, Marshall K,. Prospective randomized trial to assess caloric and protein needs of critically ill, anuric, ventilated patients requiring continuous renal replacement therapy. Nutrition 2003; 19: 909 – 16.en_US
dc.identifier.citedreferenceBellomo R, Seacombe J, Daskalakis M,. A prospective comparative study of moderate versus high protein intake for critically ill patients with acute renal failure. Ren Fail 1997; 19: 111 – 20.en_US
dc.identifier.citedreferenceBellomo R, Tan HK, Bhonagiri S,. High protein intake during continuous hemodiafiltration: impact on amino acids and nitrogen balance. Int J Artif Organs 2002; 25: 261 – 8.en_US
dc.identifier.citedreferenceFiaccadori E, Lombardi M, Leonardi S,. Prevalence and clinical outcome associated with preexisting malnutrition in acute renal failure: a prospective cohort study. J Am Soc Nephrol 1999; 10: 581 – 93.en_US
dc.identifier.citedreferenceArora P, Strauss BJ, Borovnicar D, Stroud D, Atkins RC, Kerr PG. Total body nitrogen predicts long‐term mortality in haemodialysis patients: a single‐centre experience. Nephrol Dial Transplant 1998; 13: 1731 – 6.en_US
dc.identifier.citedreferenceFranz M, Hörl WH. Protein catabolismi in acute renal failure. Miner Electrolyte Metab 1997; 23: 189 – 93.en_US
dc.identifier.citedreferenceMatthews DE. Proteins and amino acids. In: Shils ME, Olson JA, Shike M, Ross AC, eds. Modern nutrition in health and disease, 9th ed. Baltimore, MD: Lippincott Williams & Wilkins; 1999: 11 – 48.en_US
dc.identifier.citedreferenceRaj DSC, Adeniyi O, Dominic EA,. Amino acid repletion does not decrease muscle protein catabolism during hemodialysis. Am J Physiol Endocrinol Metab 2007; 292: E1534 – 42.en_US
dc.identifier.citedreferenceBohé J, Rennie MJ. Muscle protein metabolism during hemodialysis. J Ren Nutr 2006; 16: 3 – 16.en_US
dc.identifier.citedreferenceRennie MJ, Bohé J, Wolfe RR. Latency, duration and dose response relationships of amino acid effects on human muscle protein synthesis. J Nutr 2002; 132: S3225 – 7.en_US
dc.identifier.citedreferenceWolfe RR, Goodenough RD, Burke JF, Wolfe MH. Response of protein and urea kinetics in burn patients to different levels of protein intake. Ann Surg 1983; 197: 163 – 71.en_US
dc.identifier.citedreferenceGabbai FB, Peterson OW, Blantz RC. Glycine prevents toxic tubular cell injury. Ren Fail 1994; 16: 101 – 8.en_US
dc.identifier.citedreferenceKaltenbach JP, Ganote CE, Carone FA. Renal tubular necrosis induced by compounds structurally related to D‐serine. Exp Mol Pathol 1979; 30: 209 – 14.en_US
dc.identifier.citedreferenceRacusen LC, Whelton A, Solez K. Effects of lysine and other amino acids on kidney structure and function in the rat. Am J Pathol 1985; 120: 436 – 42.en_US
dc.identifier.citedreferenceBrunori G. Nutrition support in renal disease. In: Payne‐James J, Grimble GK, Silk DBA, eds. Artificial nutrition support in clinical practice, 2nd ed. London: Greenwich Medical Media Limited; 2001: 523 – 35.en_US
dc.identifier.citedreferenceHeyland DK. Immunonutrition in the critically ill: putting the cart before the horse?. Nutr Clin Pract 2002; 17: 267 – 72.en_US
dc.identifier.citedreferenceMarik PE. The cardiovascular dysfunction of sepsis: a NO and L‐arginine deficient state?. Crit Care Med 2003; 31: 971 – 3.en_US
dc.identifier.citedreferenceMarik PE. Arginine: too much of a good thing may be bad! Crit Care Med 2006; 34: 2844 – 7.en_US
dc.identifier.citedreferenceOchoa JB, Strange J, Kearney P,. Effects of L‐arginine on the proliferation of T lymphocyte subpopulations. JPEN J Parenter Enteral Nutr 2001; 25: 23 – 9.en_US
dc.identifier.citedreferenceSchwartz IF, Schwartz D, Traskonov M,. L‐arginine transport is augmented through up‐regulation of tubular CAT‐2 mRNA in ischemic acute renal failure in rats. Kidney Int 2002; 62: 1700 – 6.en_US
dc.identifier.citedreferenceJerkic M, Varagic J, Jovovic D,. L‐arginine reduces tubular cell injury in acute post‐ischaemic renal failure. Nephrol Dial Transplant 1999; 14: 1398 – 407.en_US
dc.identifier.citedreferenceDe Nicola L, Thomson SC, Wead LM, Brown MR, Gabbai FB. Arginine feeding modifies cyclosporine nephrotoxicity in rats. J Clin Invest 1993; 92: 1859 – 65.en_US
dc.identifier.citedreferenceBellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, for the Acute Dialysis Quality Initiative Workgroup. Acute renal failure: definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative group. Crit Care 2004; 8: R204 – 12.en_US
dc.identifier.citedreferenceOstermann M, Chang RW. Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med 2007; 35: 1837 – 43.en_US
dc.identifier.citedreferenceUchino S, Kellum JA, Bellomo R, et al, for the Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 2005; 294: 813 – 18.en_US
dc.identifier.citedreferenceUchino S, Bellomo R, Morimatsu H, et al, for the Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Continuous renal replacement therapy: a worldwide practice survey. Intensive Care Med 2007; 33: 1563 – 70.en_US
dc.identifier.citedreferenceMarin A, Hardy G. Practical implications of nutritional support during continuous renal replacement therapy. Curr Opin Clin Nutr Metab Care 2001; 4: 219 – 25.en_US
dc.identifier.citedreferenceWooley JA, Btaiche IF, Good KL. Metabolic and nutritional aspects of acute renal failure in critically ill patients requiring continuous renal replacement therapy. Nutr Clin Pract 2005; 20: 176 – 91.en_US
dc.identifier.citedreferenceRonco C, Cruz D, Bellomo R. Continuous renal replacement in critical illness. Contrib Nephrol 2007; 156: 309 – 19.en_US
dc.identifier.citedreferenceDruml W. Nutritional management of acute renal failure. Am J Kidney Dis 2001; 37 ( suppl 2 ): S89 – 94.en_US
dc.identifier.citedreferenceBozfakioglu S. Nutrition in patients with acute renal failure. Nephrol Dial Transplant 2001; 16: 21 – 2.en_US
dc.identifier.citedreferenceMitch WE, Chesney RW. Amino acid metabolism by the kidney. Miner Electrolyte Metab 1983; 9: 190 – 202.en_US
dc.identifier.citedreferenceLaidlaw SA, Kopple JD. Newer concepts of the indispensable amino acids. Am J Clin Nutr 1987; 46: 593 – 605.en_US
dc.identifier.citedreferenceClowes GH, Heideman M, Lindberg B,. Effects of parenteral alimentation on amino acid metabolism in septic patients. Surgery 1980; 88: 531 – 43.en_US
dc.identifier.citedreferenceVente JP, Von Meyenfeldt MF, Van Eijk HM,. Plasma amino acid profiles in sepsis and stress. Ann Surg 1989; 209: 57 – 62.en_US
dc.identifier.citedreferenceAvenell A. Glutamine in critical care: current evidence from systematic reviews. Proc Nutr Soc 2006; 65: 236 – 41.en_US
dc.identifier.citedreferenceBerg A, Norberg A, Martling CR, Gamrin L, Rooyackers O, Wernerman J. Glutamine kinetics during intravenous glutamine supplementation in ICU patients on continuous renal replacement therapy. Intensive Care Med 2007; 33: 660 – 6.en_US
dc.identifier.citedreferenceWindle EM. Glutamine supplementation in critical illness: evidence, recommendations, and implications for clinical practice in burn care. J Burn Care Res 2006; 27: 764 – 72.en_US
dc.identifier.citedreferenceBtaiche IF, Khalidi N. Metabolic complications of parenteral nutrition in adults, part 1. Am J Health-Syst Pharm 2004; 61: 1938 – 49.en_US
dc.identifier.citedreferenceVan Den Berghe G, Wilmer A, Milants I,. Intensive insulin therapy in mixed medical/surgical intensive care units: benefit versus harm. Diabetes 2006; 55: 3151 – 9.en_US
dc.identifier.citedreferenceFrankenfield DC, Reynolds HN. Nutritional effect of continuous hemodiafiltration. Nutrition 1995; 11: 388 – 93.en_US
dc.identifier.citedreferenceThe National Kidney Foundation. K/DOQI clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis 2000; 35 ( 6 suppl 2): S1 – 140. (Erratum in Am J Kidney Dis 2001;38:917.).en_US
dc.identifier.citedreferenceDickerson RN. Using nitrogen balance in clinical practice. Hosp Pharm 2005; 40: 1081 – 5.en_US
dc.identifier.citedreferenceWernerman J, Von Der Decken A, Vinnars E. Protein synthesis in skeletal muscle in relation to nitrogen balance after abdominal surgery: the effect of total parenteral nutrition. JPEN JParenter Enteral Nutr 1986; 10: 578 – 82.en_US
dc.identifier.citedreferenceKonstantinides FN, Konstantinides NN, Li JC, Myaya ME, Cerra FB. Urinary urea nitrogen: too insensitive for calculating nitrogen balance studies in surgical clinical nutrition. JPEN J Parenter Enteral Nutr 1991; 15: 189 – 93.en_US
dc.identifier.citedreferenceBlumenkrantz MJ, Kopple JD, Gutman RA,. Methods for assessing nutritional status of patients with renal failure. Am J Clin Nutr 1980; 33: 1567 – 85.en_US
dc.identifier.citedreferenceKopple JD. Renal disorders and nutrition. In: Shils ME, Olson JA, Shike M, Ross AC, eds. Modern nutrition in health and disease, 9th ed. Baltimore, MD: Lippincott Williams & Wilkins; 1999: 1439 – 72.en_US
dc.identifier.citedreferenceDruml W. Nutritional support in acute renal failure. In: Mitch WE, Klahr S, eds. Handbook of nutrition and the kidney, 4th ed. Philadelphia, PA: Lippincott, Williams & Wilkins; 2002: 191 – 213.en_US
dc.identifier.citedreferenceClark WR, Mueller BA, Alaka KJ, Macias WL. A comparison of metabolic control by continuous and intermittent therapies in acute renal failure. J Am Soc Nephrol 1994; 4: 1413 – 20.en_US
dc.identifier.citedreferenceLeblanc M, Garred LJ, Cardinal J,. Catabolism in critical illness: estimation from urea nitrogen appearance and creatinine production during continuous renal replacement therapy. Am J kidney Dis 1998; 32: 444 – 53.en_US
dc.identifier.citedreferenceTremblay R, Ethier J, Quérin S, Béroniade V, Falardeau P, Leblanc M. Veno‐venous continuous renal replacement therapy for burned patients with acute renal failure. Burns 2000; 26: 638 – 43.en_US
dc.identifier.citedreferenceChima CS, Meyer L, Hummell AC,. Nitrogen balance in postsurgical patients with acute renal failure on continuous arteriovenous hemofiltration and total parenteral nutrition. J Am Soc Nephrol 1993; 3: 1516 – 21.en_US
dc.identifier.citedreferenceFiaccadori E, Maggiore U, Rotelli C,. Effects of different energy intakes on nitrogen balance in patients with acute renal failure: a pilot study. Nephrol Dial Transplant 2005; 20: 1976 – 80.en_US
dc.identifier.citedreferenceThe American Society for Parenteral and Enteral Nutrition Board of Directors and the Clinical Guidelines Task Force. Renal disease. JPEN J Parenter Enteral Nutr 2002; 26: SA78 – 9.en_US
dc.identifier.citedreferenceBellomo R, Farmer M, Bhonagiri S,. Changing acute renal failure treatment from intermittent hemodialysis to continuous hemofiltration: impact on azotemic control. Int J Artif Organs 1999; 22: 145 – 50.en_US
dc.identifier.citedreferenceMirtallo JM, Schneider PJ, Mavko K,. A comparison of essential and general amino acid infusions in the nutritional support of patients with compromised renal function. JPEN J Parenter Enteral Nutr 1982; 8: 109 – 13.en_US
dc.identifier.citedreferenceLong CL, Jeevanandam M, Kinney JM. Metabolism and recycling of urea in man. Am J Clin Nutr 1978; 31: 1367 – 82.en_US
dc.identifier.citedreferenceKopple JD, Swendseid ME. Evidence that histidine is an essential amino acid in normal and chronically uremic man. J Clin Invest 1975; 55: 881 – 9.en_US
dc.identifier.citedreferenceRapp RP, Bivins BA, McRoberts JW. Hyperammonemia encephalopathy in a patient receiving essential amino acid/dextrose parenteral nutrition. Clin Pharm 1982; 1: 276 – 80.en_US
dc.identifier.citedreferenceBellomo R, Mehta R. Acute renal replacement in the intensive care unit: now and tomorrow. New Horiz 1995; 3: 760 – 7.en_US
dc.identifier.citedreferenceSwartz RD, Bustami RT, Daley JM, Gillespie BW, Port FK. Estimating the impact of renal replacement therapy choice on outcome in severe acute renal failure. Clin Nephrol 2005; 63: 335 – 45.en_US
dc.identifier.citedreferenceKellum JA, Mehta RL, Angus DC, Palevsky P, Ronco C, for the ADQI Workgroup. The first international consensus conference on continuous renal replacement therapy. Kidney Int 2002; 62: 1855 – 63.en_US
dc.identifier.citedreferenceJoy MS, Matzke GR, Armstrong DK, Marx MA, Zarowitz BJ. A primer on continuous renal replacement therapy for critically ill patients. Ann Pharmacother 1998; 32: 362 – 75.en_US
dc.identifier.citedreferenceClark WR, Mueller BA, Kraus MA, Macias WL. Extracorporeal therapy requirements for patients with acute renal failure. J Am Soc Nephrol 1997; 8: 804 – 12.en_US
dc.identifier.citedreferenceMueller BA, Pasko DA, Sowinski KM. Higher renal replacement therapy dose delivery influences on drug therapy. Artif Organs 2003; 27: 806 – 12.en_US
dc.identifier.citedreferenceDruml W. Metabolic aspects of continuous renal replacement therapies. Kidney Int Suppl 1999; 72: S56 – 61.en_US
dc.identifier.citedreferenceWard RA. Protein‐leaking membranes for hemodialysis: a new class of membranes in search of an application. J Am Soc Nephrol 2005; 16: 2421 – 30.en_US
dc.identifier.citedreferenceMokrzycki MH, Kaplan AA. Protein losses in continuous renal replacement therapies. J Am Soc Nephrol 1996; 7: 2259 – 63.en_US
dc.identifier.citedreferenceWolfson M, Jones MR, Kopple JD. Amino acid losses during hemodialysis with infusion of amino acids and glucose. Kidney Int 1982; 21: 500 – 6.en_US
dc.identifier.citedreferenceHynote ED, McCamish MA, Depner TA, Davis PA. Amino acid losses during hemodialysis: effects of high‐solute flux and parenteral nutrition in acute renal failure. JPEN J Parenter Enteral Nutr 1995; 19: 15 – 21.en_US
dc.identifier.citedreferenceNavarro JF, Marcen R, Teruel JL,. Effect of different membranes on amino acid losses during haemodialysis. Nephrol Dial Transplant 1998; 13: 113 – 17.en_US
dc.identifier.citedreferenceIkizler TA, Flakoll PJ, Parker RA, Hakim RM. Amino acid and albumin losses during hemodialysis. Kidney Int 1994; 46: 830 – 7.en_US
dc.identifier.citedreferenceNavarro JF, Mora C, León C,. Amino acid losses during hemodialysis with polyacrylonitrile membranes: effect of intradialytic amino acid supplementation on plasma amino acid concentrations and nutritional variables in nondiabetic patients. Am J Clin Nutr 2000; 71: 765 – 73.en_US
dc.identifier.citedreferenceKihara M, Ikeda Y, Fujita H,. Amino acid losses and nitrogen balance during slow diurnal hemodialysis in critically ill patients with renal failure. Intensive Care Med 1997; 23: 110 – 13.en_US
dc.identifier.citedreferenceDavenport A, Roberts NB. Amino acid losses during haemofiltration. Blood Purif 1989; 7: 192 – 6.en_US
dc.identifier.citedreferenceDavenport A, Roberts NB. Amino acid losses during continuous high‐flux hemofiltration in the critically ill. Crit Care Med 1989; 17: 1010 – 14.en_US
dc.identifier.citedreferenceMaxvold NJ, Smoyer WE, Custer JR, Bunchman TE. Amino acid loss and nitrogen balance in critically ill children with acute renal failure: a prospective comparison between classic hemofiltration and hemofiltration with dialysis. Crit Care Med 2000; 28: 1161 – 5.en_US
dc.identifier.citedreferenceDavies SP, Reaveley DA, Brown EA, Kox WJ. Amino acid clearances and daily losses in patients with acute renal failure treated by continuous arteriovenous hemodialysis. Crit Care Med 1991; 19: 1510 – 15.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.