Show simple item record

Characterization of kallikrein‐related peptidase 4 glycosylations

dc.contributor.authorYamakoshi, Yasuoen_US
dc.contributor.authorYamakoshi, Fumikoen_US
dc.contributor.authorHu, Jan C‐C.en_US
dc.contributor.authorSimmer, James P.en_US
dc.date.accessioned2012-03-16T15:58:37Z
dc.date.available2013-02-01T20:26:12Zen_US
dc.date.issued2011-12en_US
dc.identifier.citationYamakoshi, Yasuo; Yamakoshi, Fumiko; Hu, Jan C‐c. ; Simmer, James P. (2011). "Characterization of kallikreinâ related peptidase 4 glycosylations." European Journal of Oral Sciences 119. <http://hdl.handle.net/2027.42/90288>en_US
dc.identifier.issn0909-8836en_US
dc.identifier.issn1600-0722en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90288
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.subject.otherKallikrein 4en_US
dc.subject.otherGlycosylationsen_US
dc.subject.otherEnamelen_US
dc.subject.otherSerine Proteasesen_US
dc.subject.otherSialic Aciden_US
dc.titleCharacterization of kallikrein‐related peptidase 4 glycosylationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbsecondlevelOtolaryngologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, University of Michigan School of Dentistry, Eisenhower Place, Ann Arbor, MI, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90288/1/j.1600-0722.2011.00863.x.pdf
dc.identifier.doi10.1111/j.1600-0722.2011.00863.xen_US
dc.identifier.sourceEuropean Journal of Oral Sciencesen_US
dc.identifier.citedreferenceYamakoshi Y, Tanabe T, Oida S, Hu CC, Simmer JP, Fukae M. Calcium binding of enamel proteins and their derivatives with emphasis on the calcium‐binding domain of porcine sheathlin. Arch Oral Biol 2001; 46: 1005 – 1014.en_US
dc.identifier.citedreferenceWormald MR, Dwek RA. Glycoproteins: glycan presentation and protein‐fold stability. Structure 1999; 7: R155 – R160.en_US
dc.identifier.citedreferenceBrooks SA, Carter TM, Royle L, Harvey DJ, Fry SA, Kinch C, Dwek RA, Rudd PM. Altered glycosylation of proteins in cancer: what is the potential for new anti‐tumour strategies. Anticancer Agents Med Chem 2008; 8: 2 – 21.en_US
dc.identifier.citedreferenceJaeken J. Congenital disorders of glycosylation. Ann N Y Acad Sci 2010; 1214: 190 – 198.en_US
dc.identifier.citedreferenceThiel C, Korner C. Mouse models for congenital disorders of glycosylation. J Inherit Metab Dis 2011; 34: 879 – 889.en_US
dc.identifier.citedreferenceNagano T, Kakegawa A, Yamakoshi Y, Tsuchiya S, Hu JC, Gomi K, Arai T, Bartlett JD, Simmer JP. Mmp‐20 and Klk4 cleavage site preferences for amelogenin sequences. J Dent Res 2009; 88: 823 – 828.en_US
dc.identifier.citedreferenceHu JC, Ryu OH, Chen JJ, Uchida T, Wakida K, Murakami C, Jiang H, Qian Q, Zhang C, Ottmers V, Bartlett JD, Simmer JP. Localization of EMSP1 expression during tooth formation and cloning of mouse cDNA. J Dent Res 2000; 79: 70 – 76.en_US
dc.identifier.citedreferenceMaley F, Trimble RB, Tarentino AL, Plummer TH Jr. Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 1989; 180: 195 – 204.en_US
dc.identifier.citedreferenceDebela M, Beaufort N, Magdolen V, Schechter NM, Craik CS, Schmitt M, Bode W, Goettig P. Structures and specificity of the human kallikrein‐related peptidases KLK 4, 5, 6, and 7. Biol Chem 2008; 389: 623 – 632.en_US
dc.identifier.citedreferenceSimmer JP, Fincham AG. Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med 1995; 6: 84 – 108.en_US
dc.identifier.citedreferenceSmith CE. Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med 1998; 9: 128 – 161.en_US
dc.identifier.citedreferenceFincham AG, Moradian‐Oldak J, Simmer JP. The structural biology of the developing dental enamel matrix. J Struct Biol 1999; 126: 270 – 299.en_US
dc.identifier.citedreferenceBartlett JD, Simmer JP. Proteinases in developing dental enamel. Crit Rev Oral Biol Med 1999; 10: 425 – 441.en_US
dc.identifier.citedreferenceLu Y, Papagerakis P, Yamakoshi Y, Hu JC, Bartlett JD, Simmer JP. Functions of KLK4 and MMP‐20 in dental enamel formation. Biol Chem 2008; 389: 695 – 700.en_US
dc.identifier.citedreferenceKobayashi K, Yamakoshi Y, Hu JC, Gomi K, Arai T, Fukae M, Krebsbach PH, Simmer JP. Splicing determines the glycosylation state of ameloblastin. J Dent Res 2007; 86: 962 – 967.en_US
dc.identifier.citedreferenceYamakoshi Y, Hu JC‐C, Fukae M, Iwata T, Simmer JP. How do MMP‐20 and KLK4 process the 32 kDa enamelin? Eur J Oral Sci 2006; 114 ( Suppl. 1 ): 45 – 51.en_US
dc.identifier.citedreferenceTanabe T, Aoba T, Moreno EC, Fukae M, Shimizu M. Properties of phosphorylated 32 kd nonamelogenin proteins isolated from porcine secretory enamel. Calcif Tissue Int 1990; 46: 205 – 215.en_US
dc.identifier.citedreferenceAl‐Hashimi N, Lafont AG, Delgado S, Kawasaki K, Sire JY. The enamelin genes in lizard, crocodile, and frog and the pseudogene in the chicken provide new insights on enamelin evolution in tetrapods. Mol Biol Evol 2010; 27: 2078 – 2094.en_US
dc.identifier.citedreferenceAl‐Hashimi N, Sire JY, Delgado S. Evolutionary analysis of mammalian enamelin, the largest enamel protein, supports a crucial role for the 32‐kDa peptide and reveals selective adaptation in rodents and primates. J Mol Evol 2009; 69: 635 – 656.en_US
dc.identifier.citedreferenceYamakoshi Y. Carbohydrate moieties of porcine 32 kDa enamelin. Calcif Tissue Int 1995; 56: 323 – 330.en_US
dc.identifier.citedreferenceYamakoshi Y, Pinheiro FH, Tanabe T, Fukae M, Shimizu M. Sites of asparagine‐linked oligosaccharides in porcine 32 kDa enamelin. Connect Tissue Res 1998; 39: 39 – 46.en_US
dc.identifier.citedreferenceRavindranath R, Moradian‐Oldak J, Fincham A. Tyrosyl motif in amelogenins binds N‐acetyl‐D‐glucosamine. J Biol Chem 1999; 274: 2464 – 2471.en_US
dc.identifier.citedreferenceYamakoshi Y, Hu J‐C, Fukae M, Tanabe T, Oida S, Simmer J. Amelogenin and 32 kDa enamelin protein‐protein interactions. In: Kobayashi I, Ozawa H, eds. Biomineralization (Biom2001) formation, diversity, evolution and application. Kanagawa, Jpn: Tokai University Press, 2004; 338 – 342.en_US
dc.identifier.citedreferenceGasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis Tools on the ExPASy server. In: Walker JM, ed. The proteomics protocols handbook. Totowa, NJ: Humana Press, 2005; 571 – 608.en_US
dc.identifier.citedreferenceHu JC, Sun X, Zhang C, Liu S, Bartlett JD, Simmer JP. Enamelysin and kallikrein‐4 mRNA expression in developing mouse molars. Eur J Oral Sci 2002; 110: 307 – 315.en_US
dc.identifier.citedreferenceSimmer JP, Sun X, Yamada Y, Zhang CH, Bartlett JD, Hu JC‐C. Enamelysin and kallikrein‐4 expression in the mouse incisor. In: Kobayashi I, Ozawa H, eds. Biomineralization: Formation, diversity, evolution and application Proceedings of the 8th International Symposium on Biomineralization, Niigata, Jpn, Sept 25‐28, 2001. Hadano, Jpn: Tokai University Press, 2004; 348 – 352.en_US
dc.identifier.citedreferenceSimmer J, Richardson A, Smith C, Hu Y, Hu J‐C. Expression of kallikrein 4 (Klk4) in dental and non‐dental tissues. Eur J Oral Sci 2011; 119 ( Suppl. 1 ): 226 – 233.en_US
dc.identifier.citedreferenceSimmer JP, Hu Y, Lertlam R, Yamakoshi Y, Hu JC. Hypomaturation enamel defects in Klk4 knockout/LacZ knockin mice. J Biol Chem 2009; 284: 19110 – 19121.en_US
dc.identifier.citedreferenceHart PS, Hart TC, Michalec MD, Ryu OH, Simmons D, Hong S, Wright JT. Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. J Med Genet 2004; 41: 545 – 549.en_US
dc.identifier.citedreferenceSmith CE, Richardson AS, Hu Y, Bartlett JD, Hu JC, Simmer JP. Effect of kallikrein 4 Loss on enamel mineralization: comparison with mice lacking matrix metalloproteinase 20. J Biol Chem 2011; 286: 18149 – 18160.en_US
dc.identifier.citedreferenceSimmer J, Hu Y, Richardson A, Bartlett J, Hu JC‐C. Why Does Enamel in Klk4 Null Mice Break Above the Dentino‐Enamel Junction? Cells Tissues Organs 2011; 194: 211 – 215.en_US
dc.identifier.citedreferenceDebela M, Magdolen V, Grimminger V, Sommerhoff C, Messerschmidt A, Huber R, Friedrich R, Bode W, Goettig P. Crystal structures of human tissue kallikrein 4: activity modulation by a specific zinc binding site. J Mol Biol 2006; 362: 1094 – 1107.en_US
dc.identifier.citedreferenceRyu O, Hu JC, Yamakoshi Y, Villemain JL, Cao X, Zhang C, Bartlett JD, Simmer JP. Porcine kallikrein‐4 activation, glycosylation, activity, and expression in prokaryotic and eukaryotic hosts. Eur J Oral Sci 2002; 110: 358 – 365.en_US
dc.identifier.citedreferenceScully JL, Bartlett JD, Chaparian MG, Fukae M, Uchida T, Xue J, Hu CC, Simmer JP. Enamel matrix serine proteinase 1: stage‐specific expression and molecular modeling. Connect Tissue Res 1998; 39: 111 – 122.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.