Show simple item record

Quantification of genes and gene transcripts for microbial perchlorate reduction in fixed‐bed bioreactors

dc.contributor.authorDe Long, S.K.en_US
dc.contributor.authorLi, X.en_US
dc.contributor.authorBae, S.en_US
dc.contributor.authorBrown, J.C.en_US
dc.contributor.authorRaskin, L.en_US
dc.contributor.authorKinney, K.A.en_US
dc.contributor.authorKirisits, M.J.en_US
dc.date.accessioned2012-03-16T15:59:32Z
dc.date.available2013-05-01T17:24:41Zen_US
dc.date.issued2012-03en_US
dc.identifier.citationDe Long, S.K.; Li, X.; Bae, S.; Brown, J.C.; Raskin, L.; Kinney, K.A.; Kirisits, M.J. (2012). "Quantification of genes and gene transcripts for microbial perchlorate reduction in fixed‐bed bioreactors." Journal of Applied Microbiology 112(3). <http://hdl.handle.net/2027.42/90307>en_US
dc.identifier.issn1364-5072en_US
dc.identifier.issn1365-2672en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90307
dc.description.abstractAims:  Optimization of full‐scale, biological perchlorate treatment processes for drinking water would benefit from knowledge of the location and quantity of perchlorate‐reducing bacteria (PRB) and expression of perchlorate‐related genes in bioreactors. The aim of this study was to quantify perchlorate removal and perchlorate‐related genes ( pcrA and cld ) and their transcripts in bioreactors and to determine whether these genes or transcripts could serve as useful biomarkers for perchlorate treatment processes. Methods and Results:  Quantitative PCR (qPCR) assays targeting pcrA and cld were applied to two pilot‐scale, fixed‐bed bioreactors treating perchlorate‐contaminated groundwater. pcrA and cld genes per microgram of DNA were two‐ to threefold higher and three‐ to fourfold higher, respectively, in the bioreactor showing superior perchlorate‐removal performance. In a laboratory‐scale bioreactor, quantities of pcrA and cld genes and transcripts were compared under two distinct performance conditions ( c.  60 and 20% perchlorate removal) for a 5‐min empty bed contact time. cld genes per microgram of DNA were approximately threefold higher and cld transcripts per microgram of RNA were approximately sixfold higher under the higher perchlorate‐removal condition. No differences in pcrA genes or transcripts per microgram of DNA or RNA, respectively, were detected between the c.  60 and 20% perchlorate‐removal conditions, possibly because these assays did not accurately quantify pcrA genes and transcripts in the mixed culture present. Conclusions:  Quantities of cld genes and transcripts per microgram of DNA and RNA, respectively, were found to be higher when perchlorate removal was higher. However, quantities of pcrA and cld genes or transcripts were not found to directly correlate with perchlorate‐removal rates. Significance and Impact of the Study:  To our knowledge, this study represents the first application of qPCR assays to quantify perchlorate‐related genes and transcripts in continuous‐flow bioreactors. The results indicate that cld gene and transcript quantities can provide insights regarding the quantity, location and gene expression of PRB in bioreactors.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherBiological Drinking Water Treatmenten_US
dc.subject.otherPerchlorate‐Reducing Bacteriaen_US
dc.subject.otherQuantitative PCRen_US
dc.subject.otherReverse‐Transcription QPCRen_US
dc.subject.otherPerchlorateen_US
dc.titleQuantification of genes and gene transcripts for microbial perchlorate reduction in fixed‐bed bioreactorsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationother Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, TX, USAen_US
dc.contributor.affiliationother Carollo Engineers, Sarasota, FL, USAen_US
dc.identifier.pmid22188394en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90307/1/JAM_5225_sm_FigS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90307/2/JAM_5225_sm_FigS2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90307/3/j.1365-2672.2011.05225.x.pdf
dc.identifier.doi10.1111/j.1365-2672.2011.05225.xen_US
dc.identifier.sourceJournal of Applied Microbiologyen_US
dc.identifier.citedreferenceMarsh, T.L., Saxman, P., Cole, J. and Tiedje, J. ( 2000 ) Terminal restriction fragment length polymorphism analysis program, a web‐based research tool for microbial community analysis. Appl Environ Microbiol 66, 3616 – 3620.en_US
dc.identifier.citedreferenceChoi, Y.C., Li, X., Raskin, L. and Morgenroth, E. ( 2007 ) Effect of backwashing on perchlorate removal in fixed bed biofilm reactors. Water Res 41, 1949 – 1959.en_US
dc.identifier.citedreferenceDe Long, S.K., Kinney, K.A. and Kirisits, M.J. ( 2010 ) qPCR assays to quantify genes and gene expression associated with microbial perchlorate reduction. J Microbiol Methods 83, 270 – 274.en_US
dc.identifier.citedreferenceEgert, M. and Friedrich, M.W. ( 2005 ) Post‐amplification Klenow fragment treatment alleviates PCR bias caused by partially single‐stranded amplicons. J Microbiol Methods 61, 69 – 75.en_US
dc.identifier.citedreferenceGiblin, T., Herman, D., Deshusses, M.A. and Frankenberger, W.T. ( 2000 ) Removal of perchlorate in ground water with a flow‐through bioreactor. J Environ Qual 29, 578 – 583.en_US
dc.identifier.citedreferenceGreer, M.A., Goodman, G., Pleus, R.C. and Greer, S.E. ( 2002 ) Health effects assessment for environmental perchlorate contamination: the dose response for inhibition of thyroidal radioiodine uptake in humans. Environ Health Perspect 110, 927 – 937.en_US
dc.identifier.citedreferenceHautman, D.P., Munch, D.J., Eaton, A.D. and Haghani, A.W. ( 1999 ) Method 314.0 Determination of Perchlorate in Drinking Water Using Ion Chromatography. Cincinnati, OH: U.S. Environmental Protection Agency.en_US
dc.identifier.citedreferenceJohnson, D.R., Lee, P.K.H., Holmes, V.F. and Alvarez‐Cohen, L. ( 2005 ) An internal reference technique for accurately quantifying specific mRNAs by real‐time PCR with application to the tceA reductive dehalogenase gene. Appl Environ Microbiol 71, 3866 – 3871.en_US
dc.identifier.citedreferenceKim, K. and Logan, B.E. ( 2001 ) Microbial reduction of perchlorate in pure and mixed culture packed‐bed bioreactors. Water Res 35, 3071 – 3076.en_US
dc.identifier.citedreferenceKirisits, M.J., Prost, L., Starkey, M. and Parsek, M.R. ( 2005 ) Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71, 4809 – 4821.en_US
dc.identifier.citedreferenceLaurent, P., Prévost, M., Cigana, J., Niquette, P. and Servais, P. ( 1999 ) Biodegradable organic matter removal in biological filters: evaluation of the CHABROL model. Water Res 33, 1387 – 1398.en_US
dc.identifier.citedreferenceLaurent, P., Kihn, A., Andersson, A. and Servais, P. ( 2003 ) Impact of backwashing on nitrification in the biological activated carbon filters used in drinking water treatment. Environ Technol 24, 277 – 287.en_US
dc.identifier.citedreferenceLee, P.K.H., Johnson, D.R., Holmes, V.F., He, J.Z. and Alvarez‐Cohen, L. ( 2006 ) Reductive dehalogenase gene expression as a biomarker for physiological activity of Dehalococcoides spp. Appl Environ Microbiol 72, 6161 – 6168.en_US
dc.identifier.citedreferenceLi, X., Upadhyaya, G., Yuen, W., Brown, J., Morgenroth, E. and Raskin, L. ( 2010 ) Changes in the structure and function of microbial communities in drinking water treatment bioreactors upon addition of phosphorus. Appl Environ Microbiol 76, 7473 – 7481.en_US
dc.identifier.citedreferenceLogan, B.E. ( 1998 ) A review of chlorate‐ and perchlorate‐respiring microorganisms. Bioremediat J 2, 69 – 79.en_US
dc.identifier.citedreferenceLondon, M.R., De Long, S.K., Strahota, M.D., Katz, L.E. and Speitel, G.E. Jr ( 2011 ) Autohydrogenotrophic perchlorate reduction kinetics of a microbial consortium in the presence and absence of nitrate. Water Res 45, 6593 – 6601.en_US
dc.identifier.citedreferenceMaixner, F., Wagner, M., Lucker, S., Pelletier, E., Schmitz‐Esser, S., Hace, K., Spieck, E., Konrat, R. et al. ( 2008 ) Environmental genomics reveals a functional chlorite dismutase in the nitrite‐oxidizing bacterium ‘ Candidatus Nitrospira defluvii’. Environ Microbiol 10, 3043 – 3056.en_US
dc.identifier.citedreferenceMin, B., Evans, P.J., Chu, A.K. and Logan, B.E. ( 2004 ) Perchlorate removal in sand and plastic media bioreactors. Water Res 38, 47 – 60.en_US
dc.identifier.citedreferenceNerenberg, R., Kawagoshi, Y. and Rittmann, B.E. ( 2008 ) Microbial ecology of a perchlorate‐reducing, hydrogen‐based membrane biofilm reactor. Water Res 42, 1151 – 1159.en_US
dc.identifier.citedreferenceNozawa‐Inoue, M., Scow, K.M. and Rolston, D.E. ( 2005 ) Reduction of perchlorate and nitrate by microbial communities in vadose soil. Appl Environ Microbiol 71, 3928 – 3934.en_US
dc.identifier.citedreferenceNozawa‐Inoue, M., Jien, M., Hamilton, N.S., Stewart, V., Scow, K.M. and Hristova, K.R. ( 2008 ) Quantitative detection of perchlorate‐reducing bacteria by real‐time PCR targeting the perchlorate reductase gene. Appl Environ Microbiol 74, 1941 – 1944.en_US
dc.identifier.citedreferenceRenner, R. ( 1998 ) Perchlorate‐tainted wells spur government action. Environ Sci Technol 32, 210A.en_US
dc.identifier.citedreferenceSong, Y. and Logan, B.E. ( 2004 ) Effect of O 2 exposure on perchlorate reduction by Dechlorosoma sp KJ. Water Res 38, 1626 – 1632.en_US
dc.identifier.citedreferenceStaley, J.T. ( 1968 ) Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 95, 1921 – 1942.en_US
dc.identifier.citedreferenceUSEPA ( 2011 ) http://www.water.epa.gov/drink/contaminants/unregulated/perchlorate.cfm (last accessed: July 2011).en_US
dc.identifier.citedreferenceWebster, T.S., Guarini, W.J. and Wong, H.S. ( 2009 ) Fluidized bed bioreactor treatment of perchlorate‐laden groundwater to potable standards. J Am Water Works Assoc 101, 137 – 151.en_US
dc.identifier.citedreferenceWolff, J. ( 1998 ) Perchlorate and the thyroid gland. Pharmacol Rev 50, 89 – 105.en_US
dc.identifier.citedreferenceXu, J., Song, Y., Min, B., Steinberg, L. and Logan, B.E. ( 2003 ) Microbial degradation of perchlorate: principles and applications. Environ Eng Sci 20, 405 – 422.en_US
dc.identifier.citedreferenceZhang, H., Logan, B.E., Regan, J.M., Achenbach, L.A. and Bruns, M.A. ( 2005 ) Molecular assessment of inoculated and indigenous bacteria in biofilms from a pilot‐scale perchlorate‐reducing bioreactor. Microb Ecol 49, 388 – 398.en_US
dc.identifier.citedreferenceBender, K.S., O’Connor, S.A., Chakraborty, R., Coates, J.D. and Achenbach, L.A. ( 2002 ) Sequencing and transcriptional analysis of the chlorite dismutase gene of Dechloromonas agitata and its use as a metabolic probe. Appl Environ Microbiol 68, 4820 – 4826.en_US
dc.identifier.citedreferenceBender, K.S., Shang, C., Chakraborty, R., Belchik, S.M., Coates, J.D. and Achenbach, L.A. ( 2005 ) Identification, characterization, and classification of genes encoding perchlorate reductase. J Bacteriol 187, 5090 – 5096.en_US
dc.identifier.citedreferenceBrown, J.C., Snoeyink, V.L. and Kirisits, M.J. ( 2002 ) Abiotic and biotic perchlorate removal in an activated carbon filter. J Am Water Works Assoc 94, 70 – 79.en_US
dc.identifier.citedreferenceBrown, J.C., Snoeyink, V.L., Raskin, L. and Lin, R. ( 2003 ) The sensitivity of fixed‐bed biological perchlorate removal to changes in operating conditions and water quality characteristics. Water Res 37, 206 – 214.en_US
dc.identifier.citedreferenceBrown, J.C., Lauderdale, C., Estavo, G., Ettori, A., Shih, W., Poust, S., Walker, S., Raskin, L. et al. ( 2008 ) Direct fixed‐bed biological perchlorate destruction demonstration. ESTCP Project ER‐0544. Final Report.en_US
dc.identifier.citedreferenceBrown, J., Wheadon, R. and Hansen, E. ( 2010 ) Biodestruction of blended residual oxidant streams. J Am Water Works Assoc 102, 71 – 81.en_US
dc.identifier.citedreferenceCalifornia Department of Public Health ( 2011 ) Perchlorate in drinking water. http://www.cdph.ca.gov/certlic/drinkingwater/Pages/perchlorate.aspx (last accessed: August 2011).en_US
dc.identifier.citedreferenceChaudhuri, S.K., O’Connor, S.M., Gustavson, R.L., Achenbach, L.A. and Coates, J.D. ( 2002 ) Environmental factors that control microbial perchlorate reduction. Appl Environ Microbiol 68, 4425 – 4430.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.