Show simple item record

Ablation of Proliferating Marrow with 5‐Fluorouracil Allows Partial Purification of Mesenchymal Stem Cells

dc.contributor.authorWang, Zhuoen_US
dc.contributor.authorSong, Junhuien_US
dc.contributor.authorTaichman, Russell S.en_US
dc.contributor.authorKrebsbach, Paul H.en_US
dc.date.accessioned2012-03-16T15:59:36Z
dc.date.available2012-03-16T15:59:36Z
dc.date.issued2006-06en_US
dc.identifier.citationWang, Zhuo; Song, Junhui; Taichman, Russell S.; Krebsbach, Paul H. (2006). "Ablation of Proliferating Marrow with 5‐Fluorouracil Allows Partial Purification of Mesenchymal Stem Cells." STEM CELLS 24(6): 1573-1582. <http://hdl.handle.net/2027.42/90309>en_US
dc.identifier.issn1066-5099en_US
dc.identifier.issn1549-4918en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90309
dc.description.abstractThe ability to identify and maintain mesenchymal stem cells in vitro is a prerequisite for the ex vivo expansion of cells capable of effecting mesenchymal tissue regeneration. The aim of this investigation was to develop an assay to enrich and ultimately purify mesenchymal stem cells. To enrich the population of mesenchymal stem cell‐like cells, rats or mice were administered 5‐fluorouracil (5‐FU) in vivo. Limiting dilution analysis demonstrated that 5‐FU‐treated bone marrow had the potential to form colony‐forming units‐fibroblastic (CFU‐F) at a 10‐fold or sixfold enrichment compared to normal bone marrow in rats or mice, respectively. In vivo and in vitro differentiation assays supported the enrichment and purification effects. In vitro, bone marrow cultures from 5‐FU‐treated bone marrow demonstrated lineage‐specific gene expression in lineage‐specific medium conditions in contrast to the multilineage gene expression of control bone marrow cultures. In vivo implantation of 5‐FU‐treated cells that were not expanded in culture generated ossicles containing an intact bone cortex and mature hematopoietic components, whereas non‐5‐FU‐treated bone marrow only formed fibrous tissues. Our results demonstrate that enrichment of a quiescent cell population in the bone marrow by in vivo treatment of 5‐FU spares those undifferentiated mesenchymal stem cells and influences the differentiation of bone marrow stromal cells in vitro and in vivo. This prospective identification of a population of mesenchymal cells from the marrow that maintain their multilineage potential should lead to more focused studies on the characterization of a true mesenchymal stem cell.en_US
dc.publisherJohn Wiley & Sons, Ltd.en_US
dc.subject.other5‐Fluorouracilen_US
dc.subject.otherOsteogenesisen_US
dc.subject.otherBone Marrow Stromal Cellsen_US
dc.subject.otherTissue Engineeringen_US
dc.subject.otherStem Cellsen_US
dc.subject.otherBone Marrowen_US
dc.titleAblation of Proliferating Marrow with 5‐Fluorouracil Allows Partial Purification of Mesenchymal Stem Cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumBiologic and Materials Sciences, School of Dentistry, K1030, University of Michigan, Ann Arbor, Michigan 48109‐1078, USA. Telephone: 734‐936‐2600; Fax: 734‐763‐3453en_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationumDepartment of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USAen_US
dc.identifier.pmid16769762en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90309/1/241573_ftp.pdf
dc.identifier.doi10.1634/stemcells.2005-0399en_US
dc.identifier.sourceSTEM CELLSen_US
dc.identifier.citedreferenceBreen EC Ignotz RA, McCabe L et al. TGF‐b alters growth and differentiation related gene expression in proliferating osteoblasts in vitro, preventing development of the mature bone phenotype. J Cell Physiol 1994; 160: 323 – 335.en_US
dc.identifier.citedreferenceChen JL, Hunt P, McElvain M et al. Osteoblast precursor cells are found in CD34+ cells from human bone marrow. Stem Cells 1997; 15: 368 – 377.en_US
dc.identifier.citedreferenceEipers PG, Kale S, Taichman RS et al. Bone marrow accessory cells regulate human bone precursor cell development. Exp Hematol 2000; 28: 815 – 825.en_US
dc.identifier.citedreferenceJiang Y, Jahagirdar BN, Reinhardt RL et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41 – 49.en_US
dc.identifier.citedreferenceMajumdar MK, Thiede MA, Mosca JD et al. Phenotypic and functional comparison of cultures of marrow‐derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 1998; 176: 57 – 66.en_US
dc.identifier.citedreferenceKuznetsov SA, Mankani MH, Gronthos S et al. Circulating skeletal stem cells. J Cell Biol 2001; 153: 1133 – 1140.en_US
dc.identifier.citedreferenceFalla N, Van Vlasselaer, Bierkens J et al. Characterization of a 5‐fluorouracil‐enriched osteoprogenitor population of the murine bone marrow. Blood 1993; 82: 3580 – 3591.en_US
dc.identifier.citedreferenceBruce WR, Meeker BE. Comparison of the sensitivity of hematopoietic colony forming cells in different proliferative states to 5‐fluorouracil. J Natl Cancer Inst 1967; 38: 401 – 405.en_US
dc.identifier.citedreferenceBenayahu D, Gurevitch O, Zipori D et al. Bone formation by marrow osteogenic cells (MBA‐15) is not accompanied by osteoclastogenesis and generation of hematopoietic supportive microenvironment. J Bone Miner Res 1994; 9: 1107 – 1114.en_US
dc.identifier.citedreferenceBenayahu DEM, Wientroub S. Monoclonal antibodies recognize antigen expressed by osteoblasts. J Bone Miner Res 1995; 10: 1496 – 1503.en_US
dc.identifier.citedreferenceBerardi AC, Wang A, Levine JD et al. Functional isolation and characterization of human hematopoietic stem cells. Science 1995; 267: 104 – 108.en_US
dc.identifier.citedreferenceBertolini F, Battaglia M, Lanza A et al. Multilineage long‐term engraftment potential of drug‐resistant hematopoietic progenitors. Blood 1997; 90: 3027 – 3036.en_US
dc.identifier.citedreferenceBruder SP, Horowitz MC, Mosca JD et al. Monoclonal antibodies reactive with human osteogenic cell surface antigens. Bone 1997; 90: 3027 – 3036.en_US
dc.identifier.citedreferenceAaron JE Makins NB, Sagreiya K. The microanatomy of trabecular bone loss in normal aging men and women. Clin Orthop Res 1985; 215: 260 – 271.en_US
dc.identifier.citedreferenceSchneider A, Taboas JM, McCauley LK et al. Skeletal homeostasis in tissue‐engineered bone. J Orthop Res 2003; 21: 859 – 864.en_US
dc.identifier.citedreferenceBarry FP, Murphy JM. Mesenchymal stem cells: Clinical applications and biological characterization. Inter J Biochem Cell Biol 2004; 36: 568 – 584.en_US
dc.identifier.citedreferenceFranceschi RT, Wang D, Krebsbach PH et al. Gene therapy for bone formation: In vitro and in vivo osteogenic activity of an adenovirus expressing BMP7. J Cell Biochem 2000; 78: 476 – 486.en_US
dc.identifier.citedreferenceDucy P, Zhang R, Geoffroy V et al. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 1997; 89: 747 – 754.en_US
dc.identifier.citedreferenceWang ZQ, Ovitt C, Grigoriadis AE et al. Bone and haematopoietic defects in mice lacking c‐fos. Nature 1992; 360: 741 – 745.en_US
dc.identifier.citedreferenceWlodarski KH, Galus R, Wlodarski P. Non‐adherent bone marrow cells are a rich source of cells forming bone in vivo. Folia Biol (Praha) 2004; 50: 167 – 173.en_US
dc.identifier.citedreferenceNelissen JM, Torensma R, Pluyter M et al. Molecular analysis of the hematopoiesis supporting osteoblastic cell line U2‐OS. Exp Hematol 2000; 28: 422 – 432.en_US
dc.identifier.citedreferenceNilsson SK, Dooner MS, Tiarks CY et al. Potential and distribution of transplanted hematopoietic stem cells in a nonablated mouse model. Blood 1997; 89: 4012 – 4020.en_US
dc.identifier.citedreferencePhinney DG, Kopen G, Isaacson RL et al. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 1999; 72: 570 – 585.en_US
dc.identifier.citedreferenceKuriyama K, Higuchi C, Tanaka K et al. A novel anti‐rheumatic drug, T‐614, stimulates osteoblastic differentiation in vitro and bone morphogenetic protein‐2‐induced bone formation in vivo. Biochem Biophys Res Com 2002; 299: 903 – 909.en_US
dc.identifier.citedreferenceKuznetsov S, Kerbsbach P, Satomura K et al. Single‐colony derived strains of marrow stromal fibroblasts form bone after transplantation in vivo. J Biomed Mater Res 1997; 12: 1335 – 1347.en_US
dc.identifier.citedreferenceGoebel WS, Pech NK, Meyers JL et al. A murine model of antimetabolite‐based, submyeloablative conditioning for bone marrow transplantation: Biologic insights and potential applications. Exp Hematol 2004; 32: 1255 – 1264.en_US
dc.identifier.citedreferenceAiuti A, Tavian M, Cipponi A et al. Expression of CXCR4, the receptor for stromal cell‐derived factor‐1 on fetal and adult human lymphohematopoietic progenitors. Eur J Immunol 1999; 29: 1823 – 1831.en_US
dc.identifier.citedreferenceArai F, Hirao A, Ohmura M et al. Tie2/angiopoietin‐1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118: 149 – 161.en_US
dc.identifier.citedreferenceBanfi A, Muraglia A, Dozin B et al. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp Hematol 2000; 28: 707 – 715.en_US
dc.identifier.citedreferenceMorrison SJ, Weissman IL. The long‐term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1994; 1: 661 – 673.en_US
dc.identifier.citedreferenceOsawa M, Hanada K, Hamada H et al. Long‐term lymphohematopoietic reconstitution by a single CD34‐low/negative hematopoietic stem cell. Science 1996; 273: 242 – 245.en_US
dc.identifier.citedreferenceKiel MJ, Yilmaz OH, Iwashita T et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121: 1109 – 1121.en_US
dc.identifier.citedreferenceGronthos S, Zannettino AC, Hay SJ et al. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 2003; 116: 1827 – 1835.en_US
dc.identifier.citedreferencePittenger MF, Mackay AM, Beck SC. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143 – 147.en_US
dc.identifier.citedreferenceSatomura K, Krebsbach P, Bianco P et al. Osteogenic imprinting upstream of marrow stromal cell differentiation. J Cell Biochem 2000; 78: 391 – 403.en_US
dc.identifier.citedreferenceVan Vlasselaer P, Falla N, Snoeck H et al. Characterization and purification of osteogenic cells from murine bone marrow by two‐color cell sorting using anti‐Sca‐1 monoclonal antibody and wheat germ agglutinin. Blood 1994; 84: 753 – 763.en_US
dc.identifier.citedreferenceZhang JW, Niu C, Ye L et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836 – 841.en_US
dc.identifier.citedreferenceCho RH, Muller‐Sieburg CE. High frequency of long‐term culture‐initiating cells retain in vivo repopulation and self‐renewal capacity. Exp Hematol 2000; 28: 1080 – 1086.en_US
dc.identifier.citedreferenceDenning‐Kendall P, Singha S, Bradley B et al. Cobblestone area‐forming cells in human cord blood are heterogeneous and differ from long‐term culture‐initiating cells. Stem Cells 2003; 21: 694 – 701.en_US
dc.identifier.citedreferenceMazurier F, Doedens M, Gan OI et al. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD‐SCID mice reveals a new class of human stem cells. Nat Med 2003; 7: 959 – 963.en_US
dc.identifier.citedreferenceWang J, Kimura T, Asada R et al. SCID‐repopulating cell activity of human cord blood‐derived CD34 cells assured by intra‐bone marrow injection. Blood 2003; 101: 2924 – 2931.en_US
dc.identifier.citedreferencePetite H, Viateau V, Guillemin G. Tissue‐engineered bone regeneration. Nat Biotech 2000; 18: 959 – 963.en_US
dc.identifier.citedreferenceKrebsbach PH, Mankani MH, Satomura K et al. Repair of craniotomy defects using bone marrow stromal cells. Transplantation 1997; 67: 1272 – 1278.en_US
dc.identifier.citedreferenceKrebsbach PH, Kuznetsov SA, Satomura K et al. Bone formation in vivo: Comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 1997; 63: 1059 – 1069.en_US
dc.identifier.citedreferenceCancedda R, Bianchi G, Derubeis A et al. Cell therapy for bone disease: A review of current status. Stem Cells 2003; 21: 610 – 619.en_US
dc.identifier.citedreferenceBianco P, Robey PG. Stem cells in tissue engineering. Nature 2001; 414: 118 – 121.en_US
dc.identifier.citedreferenceProckop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71 – 74.en_US
dc.identifier.citedreferenceSmith JR, Pochampally R, Perry A et al. Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem Cells 2004; 22: 823 – 831.en_US
dc.identifier.citedreferenceBeresford J. Osteogenic stem cells and the stromal system of bone and marrow. Clin Orthop 1989; 240: 270 – 280.en_US
dc.identifier.citedreferenceCastro‐Malaspina H, Gay RE, Resnick G et al. Characterization of human bone marrow fibroblast colony‐forming cells (CFU‐F) and their progeny. Blood 1980; 56: 289 – 301.en_US
dc.identifier.citedreferenceCassiede P, Dennis JE, Ma F et al. Osteochondrogenic potential of marrow mesenchymal progenitor cells exposed to TGF‐b1 or PDGF‐BB as assayed in vivo and in vitro. J Bone Miner Res 1996; 11: 1264 – 1273.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.