Show simple item record

Guiding explanation construction by children at the entry points of learning progressions

dc.contributor.authorSonger, Nancy Butleren_US
dc.contributor.authorGotwals, Amelia Wenken_US
dc.date.accessioned2012-03-16T15:59:57Z
dc.date.available2013-04-01T14:17:24Zen_US
dc.date.issued2012-02en_US
dc.identifier.citationSonger, Nancy Butler; Gotwals, Amelia Wenk (2012). "Guiding explanation construction by children at the entry points of learning progressions." Journal of Research in Science Teaching 49(2): 141-165. <http://hdl.handle.net/2027.42/90320>en_US
dc.identifier.issn0022-4308en_US
dc.identifier.issn1098-2736en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90320
dc.description.abstractPolicy documents in science education suggest that even at the earliest years of formal schooling, students are capable of constructing scientific explanations about focal content. Nonetheless, few research studies provide insights into how to effectively provide scaffolds appropriate for late elementary‐age students' fruitful creation of scientific explanations. This article describes two research studies to address the question, what makes explanation construction difficult for elementary students? The studies were conducted in urban fourth, fifth, and sixth grade classrooms where students were learning science through curricular units that contained 8 weeks of scaffold‐rich activities focused on explanation construction. The first study focused on the kind and amount of information scaffold‐rich assessments provided about young students' abilities to construct explanations under a range of scaffold conditions. Results demonstrated that fifth and sixth grade tests provided strong information about a range of students' abilities to construct explanations under a range of supported conditions. On balance, the fourth grade test did not provide as much information, nor was this test curricular‐sensitive. The second study provided information on pre–post test achievement relative to the amount of curricular intervention utilized over the 8‐week time period with each cohort. Results demonstrated that when taking the amount of the intervention into account, there were strong learning gains in all three grade‐level cohorts. In conjunction with the pre–post study, a type‐of‐error analysis was conducted to better understand the nature of errors among younger students. This analysis revealed that our youngest students generated the most incomplete responses and struggled in particular ways with generating valid evidence. Conclusions emphasize the synergistic value of research studies on scaffold‐rich assessments, curricular scaffolds, and teacher guidance toward a more complete understanding of how to support young students' explanation construction. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 49: 141–165, 2012en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherElementaryen_US
dc.subject.otherAssessmenten_US
dc.subject.otherLearning Progressionsen_US
dc.titleGuiding explanation construction by children at the entry points of learning progressionsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelWomen's and Gender Studiesen_US
dc.subject.hlbsecondlevelEducationen_US
dc.subject.hlbsecondlevelManagementen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbsecondlevelEconomicsen_US
dc.subject.hlbtoplevelHumanitiesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelBusinessen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Education, University of Michigan, Ann Arbor, Michigan.en_US
dc.contributor.affiliationumSchool of Education, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherCollege of Education, Michigan State University, East Lansing, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90320/1/20454_ftp.pdf
dc.identifier.doi10.1002/tea.20454en_US
dc.identifier.sourceJournal of Research in Science Teachingen_US
dc.identifier.citedreferenceNational Research Council.( 2007 ). Taking science to school: Learning and teaching science in grades K‐8. Washington, DC: National Academies Press.en_US
dc.identifier.citedreferenceNational Research Council.( 2011 ). A framework for K‐12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.en_US
dc.identifier.citedreferenceOECD.( 2007 ). PISA 2006: Science competencies for tomorrow's world volume 1: Analysis. Paris, France: Organisation for Economic Co‐operation and Development.en_US
dc.identifier.citedreferenceParr, C. S., Espinosa, R., Jones, T., McDonald, S., Songer, N. B., & Myers, P. ( 2003 ). Introductory‐level Cyber Tracker sequence for Detroit‐area wildlife, augmented by web‐based data summary and display. The University of Michigan.en_US
dc.identifier.citedreferencePartnership for 21st Century Skills.( 2009 ). Framework for 21st Century Learning. Downloaded from www.p21.org/documents/P21_Framework.pdf on 3/16/2011.en_US
dc.identifier.citedreferenceSonger, N. B., Kelcey, B., & Gotwals, A. W. ( 2009 ). When and how does complex reasoning occur? Empirically driven development of a learning progression focused on complex reasoning about biodiversity. Journal of Research in Science Teaching, 46 ( 6 ), 610 – 631.en_US
dc.identifier.citedreferenceSonger, N. B. ( 2006 ). BioKIDS: An animated conversation on the development of curricular activity structures for inquiry science. In R. Keith Sawyer (Ed.), Cambridge Handbook of the Learning Sciences (pp. 355 – 369 ). New York: Cambridge.en_US
dc.identifier.citedreferenceSandoval, W. A. ( 2003 ). Conceptual and epistemic aspects of students' scientific explanations. Journal of the Learning Sciences, 12 ( 1 ), 5 – 51.en_US
dc.identifier.citedreferenceRuberg, S. J. ( 1989 ). Contrasts for identifying the minimum effective dose. Journal of the American Statistical Association, 84 ( 407 ), 816 – 822.en_US
dc.identifier.citedreferenceReiser, B. ( 2004 ). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. The Journal of the Learning Sciences, 13 ( 3 ), 273 – 304.en_US
dc.identifier.citedreferenceRaghunathan, T. E., Lepkowski, J. M., Van Hoewyk, J., & Solenberger, P. ( 2001 ). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology, 27 ( 1 ), 85 – 96.en_US
dc.identifier.citedreferenceRasch, G. ( 1960 ). Probabilistic models for some intelligence and attainment tests. Chicago: University of Chicago Press.en_US
dc.identifier.citedreferenceVygotsky, L. S. ( 1978 ). Mind in Society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.en_US
dc.identifier.citedreferenceQuintana, C., Reiser, B., Davis, E., Krajcik, J., Fretz, E., Duncan, R., … Soloway, E. ( 2004 ). A scaffolding design framework for software to support science inquiry. The Journal of the Learning Sciences, 13 ( 3 ), 337 – 386.en_US
dc.identifier.citedreferenceToulmin, S. ( 2006 ). The uses of argument (updated edition). New York: Cambridge University Press.en_US
dc.identifier.citedreferenceSonger, N. B., Shah, A. M., Fick, S. (in press). Characterizing teachers' verbal scaffolds to guide elementary students' creation of scientific explanations. School Science and Mathematics.en_US
dc.identifier.citedreferencePeters, V. Songer, N. B. (forthcoming). The co‐design of interdisciplinary knowledge in science education.en_US
dc.identifier.citedreferenceBEAR.( 2006 ). Berkeley Center for Evaluation and Assessment. Downloaded from http://bearcenter.berkeley.edu/kennedy/GMOnline/Wright_Maps.html on 3/16/2011.en_US
dc.identifier.citedreferenceBond, T. G., & Fox, C. M. ( 2001 ). Applying the Rasch model: Fundamental measurement in the human sciences. Mahwah, NJ: Lawrence Erlbaum Associates.en_US
dc.identifier.citedreferenceThe College Board.( 2009 ). Science: College Board Standards for College Success. New York, NY: The College Board.en_US
dc.identifier.citedreferenceDavis, E., & Krajcik, J. ( 2006 ). Designing educative curriculum materials to promote teacher learning. Educational Researcher, 34 ( 3 ), 3 – 14.en_US
dc.identifier.citedreferenceNo Child Left Behind.( 2002 ). Public Law 107‐110. 107th Congress. January 8, 2002.en_US
dc.identifier.citedreferenceDewey, T. A., Hammond, G. S., Espinosa, R., Parr, C. S., Jones T., & Myers, P. ( 2011 ). BioKIDS Critter Catalog (online). http://www.biokids.umich.edu.en_US
dc.identifier.citedreferenceEmbretson, S. E., & Reise, S. P. ( 2000 ). Item response theory for psychologists. Mahwah, NJ: Lawrence Erlbaum Associates.en_US
dc.identifier.citedreferenceGotwals, A. ( 2006 ). Students' science knowledge bases: Using assessment to paint a picture (unpublished doctoral dissertation). University of Michigan, Ann Arbor.en_US
dc.identifier.citedreferenceGotwals, A. W., & Songer, N. B. ( 2010 ). Reasoning up and down a food chain: Using an assessment framework to investigate students' middle knowledge. Science Education, 94, 259 – 281.en_US
dc.identifier.citedreferenceGotwals, A., Songer, N. B., Bullard, L. (in press). Assessing students' progressing abilities to Construct Scientific Explanations. In A. C. Alonzo & A. W. Gotwals (Eds.), Learning progressions in science: Current challenges and future directions. Rotterdam, The Netherlands: Sense Publishing.en_US
dc.identifier.citedreferenceKennedy, C. A., Wilson, M., Draney, K., Tutunciyan, S., & Vorp, R. ( 2008 ). ConstructMap Version 4.4.0. (computer program). UC Berkeley, CA: BEAR Center.en_US
dc.identifier.citedreferenceLee, H. S., & Songer, N. B. ( 2003 ). Making authentic science accessible to students. International Journal of Science Education, 25 ( 1 ), 1 – 26.en_US
dc.identifier.citedreferenceLehrer, R., & Schauble, L. ( 2010 ). What kind of explanation is a model? In M. K. Stein & L. Kucan (Eds.), Instructional explanations in the disciplines (pp. 9 – 22.) New York, NY: Springer.en_US
dc.identifier.citedreferenceLinn, M. C., Shear, L., Bell, P., & Slotta, J. ( 1999 ). Organizing principles for science education partnerships: Case studies of students' learning about ‘rats in space’ and ‘deformed frogs’. Educational Technology Research and Development, 47 ( 2 ), 61 – 84.en_US
dc.identifier.citedreferenceLinn, M. C., Bell, P., & Davis, E. ( 2004 ). Specific design principles: Elaborating the scaffold knowledge integration framework. In M. C. Linn, E. A. Davis, & P. Bell (Eds.), Internet environments for science education (pp. 315 – 339 ). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.en_US
dc.identifier.citedreferenceMasters, G. N. ( 1982 ). A Rasch model for partial credit scoring. Psychometricka, 47, 149 – 174.en_US
dc.identifier.citedreferenceMcNeill, K., & Krajcik, J. ( 2007 ). Middle school students' use of appropriate and inappropriate evidence in writing scientific explanations. In M. Lovett & P. Shah (Eds.), Thinking with data (pp. 233 – 265 ). New York: Taylor & Francis.en_US
dc.identifier.citedreferenceMcNeill, K. ( 2011 ). Elementary students' views of explanation, argumentation, and evidence and their abilities to construct arguments over the school year. Journal of Research in Science Teaching, 48 ( 7 ), 793 – 823.en_US
dc.identifier.citedreferenceMetz, K. E. ( 1991 ). Development of explanation: Incremental and fundamental change in children's physics knowledge. Journal of Research in Science Teaching, 28 ( 9 ), 785 – 797.en_US
dc.identifier.citedreferenceMurkaki, E. ( 1993 ). Information functions of the generalized partial credit model. Applied Psychological Measurement, 17, 351 – 363.en_US
dc.identifier.citedreferenceNational Research Council.( 1996 ). National science education standards. Washington, DC: National Academy Press.en_US
dc.identifier.citedreferenceNational Research Council.( 2000 ). Inquiry and the National Science Education Standards: A guide for teaching and learning. Washington, DC: National Academy Press.en_US
dc.identifier.citedreferenceNational Research Council.( 2004 ). On evaluating curricular effectiveness: Judging the quality of K‐12 mathematics evaluations. Washington, DC: National Academies Press.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.