Show simple item record

Serum proteomic profiling in patients with drug‐induced liver injury

dc.contributor.authorBell, L. N.en_US
dc.contributor.authorVuppalanchi, R.en_US
dc.contributor.authorWatkins, Paul B.en_US
dc.contributor.authorBonkovsky, Herbert L.en_US
dc.contributor.authorSerrano, Joseen_US
dc.contributor.authorFontana, Robert Johnen_US
dc.contributor.authorWang, M.en_US
dc.contributor.authorRochon, Jamesen_US
dc.contributor.authorChalasani, Nagaen_US
dc.date.accessioned2012-03-16T16:00:02Z
dc.date.available2013-05-01T17:24:41Zen_US
dc.date.issued2012-03en_US
dc.identifier.citationBell, L. N.; Vuppalanchi, R.; Watkins, P. B.; Bonkovsky, H. L.; Serrano, J.; Fontana, R. J.; Wang, M.; Rochon, J.; Chalasani, N. (2012). "Serum proteomic profiling in patients with drug‐induced liver injury." Alimentary Pharmacology & Therapeutics 35(5): 600-612. <http://hdl.handle.net/2027.42/90324>en_US
dc.identifier.issn0269-2813en_US
dc.identifier.issn1365-2036en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90324
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherSaunders‐Elsevieren_US
dc.titleSerum proteomic profiling in patients with drug‐induced liver injuryen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbsecondlevelOtolaryngologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid22403816en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90324/1/apt4982.pdf
dc.identifier.doi10.1111/j.1365-2036.2011.04982.xen_US
dc.identifier.sourceAlimentary Pharmacology & Therapeuticsen_US
dc.identifier.citedreferenceCraig A, Sidaway J, Holmes E, et al. Systems toxicology: integrated genomic, proteomic and metabonomic analysis of methapyrilene induced hepatotoxicity in the rat. J Proteome Res 2006; 5: 1586 – 601.en_US
dc.identifier.citedreferenceEng J, McCormack A, Yates RR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 1994; 5: 976 – 89.en_US
dc.identifier.citedreferenceHiggs RE, Knierman MD, Freeman AB, et al. Estimating the statistical significance of peptide identifications from shotgun proteomics experiments. J Proteome Res 2007; 6: 1758 – 67.en_US
dc.identifier.citedreferenceBolstad BM, Irizarry RA, Astrand M, et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185 – 93.en_US
dc.identifier.citedreferenceTujios S, Fontana RJ. Mechanisms of drug‐induced liver injury: from bedside to bench. Nat Rev Gastroenterol Hepatol 2011; 8: 202 – 11.en_US
dc.identifier.citedreferenceKienhuis AS, Bessems JG, Pennings JL, et al. Application of toxicogenomics in hepatic systems toxicology for risk assessment: acetaminophen as a case study. Toxicol Appl Pharmacol 2011; 250: 96 – 107.en_US
dc.identifier.citedreferenceEllinger‐Ziegelbauer H, Adler M, Amberg A, et al. The enhanced value of combining conventional and “omics” analyses in early assessment of drug‐induced hepatobiliary injury. Toxicol Appl Pharmacol 2011; 252: 97 – 111.en_US
dc.identifier.citedreferenceLewis JA, Dennis WE, Hadix J, et al. Analysis of secreted proteins as an in vitro model for discovery of liver toxicity markers. J Proteome Res 2010; 9: 5794 – 802.en_US
dc.identifier.citedreferenceShimada T, Nakanishi T, Toyama A, et al. Potential implications for monitoring serum bile acid profiles in circulation with serum proteome for carbon tetrachloride‐induced liver injury/regeneration model in mice. J Proteome Res 2010; 9: 4490 – 500.en_US
dc.identifier.citedreferenceWang Y, Yang B, Wu C, et al. Plasma and liver proteomic analysis of 3Z‐3‐[(1H‐pyrrol‐2‐yl)‐methylidene]‐1‐(1‐piperidinylmethyl)‐1,3‐2H‐indol‐2‐one‐induced hepatotoxicity in Wistar rats. Proteomics 2010; 10: 2927 – 41.en_US
dc.identifier.citedreferenceAndersson U, Lindberg J, Wang S, et al. A systems biology approach to understanding elevated serum alanine transaminase levels in a clinical trial with ximelagatran. Biomarkers 2009; 14: 572 – 86.en_US
dc.identifier.citedreferenceJia N, Liu X, Wen J, et al. A proteomic method for analysis of CYP450s protein expression changes in carbon tetrachloride induced male rat liver microsomes. Toxicology 2007; 237: 1 – 11.en_US
dc.identifier.citedreferenceMerrick BA, Bruno ME, Madenspacher JH, et al. Alterations in the rat serum proteome during liver injury from acetaminophen exposure. J Pharmacol Exp Ther 2006; 318: 792 – 802.en_US
dc.identifier.citedreferenceRodriguez‐Ariza A, Lopez‐Sanchez LM, Gonzalez R, et al. Altered protein expression and protein nitration pattern during d‐galactosamine‐induced cell death in human hepatocytes: a proteomic analysis. Liver Int 2005; 25: 1259 – 69.en_US
dc.identifier.citedreferenceAmacher DE, Adler R, Herath A, et al. Use of proteomic methods to identify serum biomarkers associated with rat liver toxicity or hypertrophy. Clin Chem 2005; 51: 1796 – 803.en_US
dc.identifier.citedreferenceWelch KD, Wen B, Goodlett DR, et al. Proteomic identification of potential susceptibility factors in drug‐induced liver disease. Chem Res Toxicol 2005; 18: 924 – 33.en_US
dc.identifier.citedreferenceKleno TG, Kiehr B, Baunsgaard D, et al. Combination of ‘omics’ data to investigate the mechanism(s) of hydrazine‐induced hepatotoxicity in rats and to identify potential biomarkers. Biomarkers 2004; 9: 116 – 38.en_US
dc.identifier.citedreferenceO'Connell TM, Watkins PB. The application of metabonomics to predict drug‐induced liver injury. Clin Pharmacol Ther 2010; 88: 394 – 9.en_US
dc.identifier.citedreferenceCui Y, Paules RS. Use of transcriptomics in understanding mechanisms of drug‐induced toxicity. Pharmacogenomics 2010; 11: 573 – 85.en_US
dc.identifier.citedreferenceScott CR. The genetic tyrosinemias. Am J Med Genet C Semin Med Genet 2006; 142C: 121 – 6.en_US
dc.identifier.citedreferenceManiratanachote R, Shibata A, Kaneko S, et al. Detection of autoantibody to aldolase B in sera from patients with troglitazone‐induced liver dysfunction. Toxicology 2005; 216: 15 – 23.en_US
dc.identifier.citedreferenceLaverty HG, Antoine DJ, Benson C, et al. The potential of cytokines as safety biomarkers for drug‐induced liver injury. Eur J Clin Pharmacol 2010; 66: 961 – 76.en_US
dc.identifier.citedreferenceFerre N, Martinez‐Clemente M, Lopez‐Parra M, et al. Increased susceptibility to exacerbated liver injury in hypercholesterolemic ApoE‐deficient mice: potential involvement of oxysterols. Am J Physiol Gastrointest Liver Physiol 2009; 296: G553 – 62.en_US
dc.identifier.citedreferenceNavarro VJ, Senior JR. Drug‐related hepatotoxicity. N Engl J Med 2006; 354: 731 – 9.en_US
dc.identifier.citedreferenceWatkins PB, Seeff LB. Drug‐induced liver injury: summary of a single topic clinical research conference. Hepatology 2006; 43: 618 – 31.en_US
dc.identifier.citedreferenceAbboud G, Kaplowitz N. Drug‐induced liver injury. Drug Saf 2007; 30: 277 – 94.en_US
dc.identifier.citedreferenceBonkovsky HL, Shedlofsky SI, Jones DP, et al. Drug‐induced liver injury. In: Boyer TD, Manns MP, Sanyal A, eds. Zakim and Boyer's Hepatology – A Textbook of Liver Disease, 6th ed. Philadelphia: Saunders‐Elsevier, 2011.en_US
dc.identifier.citedreferenceOstapowicz G, Fontana RJ, Schiodt FV, et al. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med 2002; 137: 947 – 54.en_US
dc.identifier.citedreferenceReuben A, Koch DG, Lee WM. Drug‐induced acute liver failure: results of a U.S. multicenter, prospective study. Hepatology 2010; 52: 2065 – 76.en_US
dc.identifier.citedreferenceBjornsson E. Drug‐induced liver injury in clinical practice. Aliment Pharmacol Ther 2010; 32: 3 – 13.en_US
dc.identifier.citedreferenceChalasani N, Bjornsson E. Risk factors for idiosyncratic drug‐induced liver injury. Gastroenterology 2010; 138: 2246 – 59.en_US
dc.identifier.citedreferenceAu JS, Navarro VJ, Rossi S. Drug‐induced liver injury – its pathophysiology and evolving diagnostic tools. Aliment Pharmacol Ther 2011; 34: 11 – 20.en_US
dc.identifier.citedreferenceFontana RJ, Watkins PB, Bonkovsky HL, et al. Drug‐Induced Liver Injury Network (DILIN) prospective study: rationale, design and conduct. Drug Saf 2009; 32: 55 – 68.en_US
dc.identifier.citedreferenceRockey DC, Seeff LB, Rochon J, et al. Causality assessment in drug‐induced liver injury using a structured expert opinion process: comparison to the Roussel‐Uclaf causality assessment method. Hepatology 2010; 51: 2117 – 26.en_US
dc.identifier.citedreferenceChalasani N, Fontana RJ, Bonkovsky HL, et al. Causes, clinical features, and outcomes from a prospective study of drug‐induced liver injury in the United States. Gastroenterology 2008; 135: 1924 – 34.en_US
dc.identifier.citedreferenceVuppalanchi R, Hayashi PH, Chalasani N, et al. Duloxetine hepatotoxicity: a case‐series from the drug‐induced liver injury network. Aliment Pharmacol Ther 2010; 32: 1174 – 83.en_US
dc.identifier.citedreferenceOrman ES, Conjeevaram HS, Vuppalanchi R, et al. Clinical and histopathologic features of fluoroquinolone‐induced liver injury. Clin Gastroenterol Hepatol 2011; 9: 517 – 23.en_US
dc.identifier.citedreferenceWang M, You J, Bemis KG, et al. Label‐free mass spectrometry‐based protein quantification technologies in proteomic analysis. Brief Funct Genomic Proteomic 2008; 7: 329 – 39.en_US
dc.identifier.citedreferenceBell LN, Theodorakis JL, Vuppalanchi R, et al. Serum proteomics and biomarker discovery across the spectrum of nonalcoholic fatty liver disease. Hepatology 2010; 51: 111 – 20.en_US
dc.identifier.citedreferenceBradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding. Anal Biochem 1976; 72: 248 – 54.en_US
dc.identifier.citedreferenceHale JE, Butler JP, Gelfanova V, et al. A simplified procedure for the reduction and alkylation of cysteine residues in proteins prior to proteolytic digestion and mass spectral analysis. Anal Biochem 2004; 333: 174 – 81.en_US
dc.identifier.citedreferenceHiggs RE, Knierman MD, Gelfanova V, et al. Comprehensive label‐free method for the relative quantification of proteins from biological samples. J Proteome Res 2005; 4: 1442 – 50.en_US
dc.identifier.citedreferenceCraig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics 2004; 20: 1466 – 7.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.