Show simple item record

Relationships between plasma membrane microdomains and HIV‐1 assembly

dc.contributor.authorOno, Akiraen_US
dc.date.accessioned2012-03-16T16:00:04Z
dc.date.available2012-03-16T16:00:04Z
dc.date.issued2010-06en_US
dc.identifier.citationOno, Akira (2010). "Relationships between plasma membrane microdomains and HIV‐1 assembly." Biology of the Cell 102(6). <http://hdl.handle.net/2027.42/90326>en_US
dc.identifier.issn0248-4900en_US
dc.identifier.issn1768-322Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90326
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherTetraspaninen_US
dc.subject.otherGagen_US
dc.subject.otherLipid Raften_US
dc.subject.otherPhosphatidylinositol 4,5‐Bisphosphateen_US
dc.subject.otherPlasma Membraneen_US
dc.subject.otherTetherinen_US
dc.titleRelationships between plasma membrane microdomains and HIV‐1 assemblyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, 5736 Medical Science Building II, 1150 W. Medical Center Drive, Ann Arbor, MI 48109‐0620, U.S.A.en_US
dc.identifier.pmid20356318en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90326/1/BC20090165.pdf
dc.identifier.doi10.1042/BC20090165en_US
dc.identifier.sourceBiology of the Cellen_US
dc.identifier.citedreferencePickl W.F. Pimentel‐Muinos F.X. Seed B. Lipid rafts and pseudotyping J. Virol. 2001 75 7175 – 7183.en_US
dc.identifier.citedreferenceShkriabai N. Datta S.A. Zhao Z. Hess S. Rein A. Kvaratskhelia M. Interactions of HIV‐1 Gag with assembly cofactors Biochemistry 2006 45 4077 – 4083.en_US
dc.identifier.citedreferenceShvartsman D.E. Kotler M. Tall R.D. Roth M.G. Henis Y.I. Differently anchored influenza hemagglutinin mutants display distinct interaction dynamics with mutual rafts J. Cell Biol. 2003 163 879 – 888.en_US
dc.identifier.citedreferenceSimons K. Ikonen E. Functional rafts in cell membranes Nature 1997 387 569 – 572.en_US
dc.identifier.citedreferenceSimons K. Toomre D. Lipid rafts and signal transduction Nat. Rev. 2000 1 31 – 39.en_US
dc.identifier.citedreferenceSol‐Foulon N. Sourisseau M. Porrot F. Thoulouze M.I. Trouillet C. Nobile C. Blanchet F. Di Bartolo V. Noraz N. Taylor N. et al ZAP‐70 kinase regulates HIV cell‐to‐cell spread and virological synapse formation EMBO J. 2007 26 516 – 526.en_US
dc.identifier.citedreferenceSourisseau M. Sol‐Foulon N. Porrot F. Blanchet F. Schwartz O. Inefficient human immunodeficiency virus replication in mobile lymphocytes J. Virol. 2007 81 1000 – 1012.en_US
dc.identifier.citedreferenceSowinski S. Jolly C. Berninghausen O. Purbhoo M.A. Chauveau A. Kohler K. Oddos S. Eissmann P. Brodsky F.M. Hopkins C. et al Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV‐1 transmission Nat. Cell Biol. 2008 10 211 – 219.en_US
dc.identifier.citedreferenceStansell E. Apkarian R. Haubova S. Diehl W.E. Tytler E.M. Hunter E. Basic residues in the Mason–Pfizer monkey virus gag matrix domain regulate intracellular trafficking and capsid‐membrane interactions J. Virol. 2007 81 8977 – 8988.en_US
dc.identifier.citedreferenceSuomalainen M. Lipid rafts and assembly of enveloped viruses Traffic 2002 3 705 – 709.en_US
dc.identifier.citedreferenceVan Damme N. Goff D. Katsura C. Jorgenson R.L. Mitchell R. Johnson M.C. Stephens E.B. Guatelli J. The interferon‐induced protein BST‐2 restricts HIV‐1 release and is downregulated from the cell surface by the viral Vpu protein Cell Host Microbe 2008 3 245 – 252.en_US
dc.identifier.citedreferenceVarthakavi V. Smith R.M. Bour S.P. Strebel K. Spearman P. Viral protein U counteracts a human host cell restriction that inhibits HIV‐1 particle production Proc. Natl. Acad. Sci. U.S.A. 2003 100 15154 – 15159.en_US
dc.identifier.citedreferenceVasiliver‐Shamis G. Cho M.W. Hioe C.E. Dustin M.L. Human immunodeficiency virus type1 envelope gp120‐induced partial T‐cell receptor signaling creates an F‐actin‐depleted zone in the virological synapse J. Virol. 2009 83 11341 – 11355.en_US
dc.identifier.citedreferenceVincent S. Gerlier D. Manie S.N. Measles virus assembly within membrane rafts J. Virol. 2000 74 9911 – 9915.en_US
dc.identifier.citedreferenceWaheed A.A. Ablan S.D. Soheilian F. Nagashima K. Ono A. Schaffner C.P. Freed E.O. Inhibition of human immunodeficiency virus type1 assembly and release by the cholesterol‐binding compound amphotericin B methyl ester: evidence for Vpu dependence J. Virol. 2008 82 9776 – 9781.en_US
dc.identifier.citedreferenceWelsch S. Keppler O.T. Habermann A. Allespach I. Krijnse‐Locker J. Krausslich H.G. HIV‐1 buds predominantly at the plasma membrane of primary human macrophages PLoS Pathog. 2007 3 e36.en_US
dc.identifier.citedreferenceWeng J. Krementsov D.N. Khurana S. Roy N.H. Thali M. Formation of syncytia is repressed by tetraspanins in human immunodeficiency virus type1‐producing cells J. Virol. 2009 83 7467 – 7474.en_US
dc.identifier.citedreferenceYanez‐Mo M. Barreiro O. Gordon‐Alonso M. Sala‐Valdes M. Sanchez‐Madrid F. Tetraspanin‐enriched microdomains: a functional unit in cell plasma membranes Trends Cell Biol. 2009 19 434 – 446.en_US
dc.identifier.citedreferenceYang P. Ai L.S. Huang S.C. Li H.F. Chan W.E. Chang C.W. Ko C.Y. Chen S.S. The cytoplasmic domain of human immunodeficiency virus type1 transmembrane protein Gp41 harbors lipid raft‐association determinants J. Virol. 2010 84 59 – 75.en_US
dc.identifier.citedreferenceZacharias D.A. Violin J.D. Newton A.C. Tsien R.Y. Partitioning of lipid‐modified monomeric GFPs into membrane microdomains of live cells Science 2002 296 913 – 916.en_US
dc.identifier.citedreferenceZhang J. Pekosz A. Lamb R.A. Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins J. Virol. 2000 74 4634 – 4644.en_US
dc.identifier.citedreferenceZhou W. Parent L.J. Wills J.W. Resh M.D. Identification of a membrane‐binding domain within the aminoterminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids J. Virol. 1994 68 2556 – 2569.en_US
dc.identifier.citedreferenceAdamson C.S. Freed E.O. Human immunodeficiency virus type1 assembly, release, and maturation Adv. Pharmacol. 2007 55 347 – 387.en_US
dc.identifier.citedreferenceAlfadhli A. Barklis R.L. Barklis E. HIV‐1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol‐(4,5)‐bisphosphate Virology 2009a 387 466 – 472.en_US
dc.identifier.citedreferenceAlfadhli A. Still A. Barklis E. Analysis of human immunodeficiency virus type1 matrix binding to membranes and nucleic acids J. Virol. 2009b 83 12196 – 12203.en_US
dc.identifier.citedreferenceAli A. Nayak D.P. Assembly of Sendai virus: M protein interacts with F and HN proteins and with the cytoplasmic tail and transmembrane domain of F protein Virology 2000 276 289 – 303.en_US
dc.identifier.citedreferenceAli A. Avalos R.T. Ponimaskin E. Nayak D.P. Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein J. Virol. 2000 74 8709 – 8719.en_US
dc.identifier.citedreferenceAloia R.C. Tian H. Jensen F.C. Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes Proc. Natl. Acad. Sci. U.S.A. 1993 90 5181 – 5185.en_US
dc.identifier.citedreferenceArthos J. Cicala C. Martinelli E. Macleod K. Van Ryk D. Wei D. Xiao Z. Veenstra T.D. Conrad T.P. Lempicki R.A. et al HIV‐1 envelope protein binds to and signals through integrin α4β7, the gut mucosal homing receptor for peripheral T cells Nat. Immunol. 2008 9 301 – 309.en_US
dc.identifier.citedreferenceBarman S. Nayak D.P. Analysis of the transmembrane domain of influenza virus neuraminidase, a type II transmembrane glycoprotein, for apical sorting and raft association J. Virol. 2000 74 6538 – 6545.en_US
dc.identifier.citedreferenceBarreiro O. Zamai M. Yanez‐Mo M. Tejera E. Lopez‐Romero P. Monk P.N. Gratton E. Caiolfa V.R. Sanchez‐Madrid F. Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms J. Cell Biol. 2008 183 527 – 542.en_US
dc.identifier.citedreferenceBartee E. McCormack A. Fruh K. Quantitative membrane proteomics reveals new cellular targets of viral immune modulators PLoS Pathog. 2006 2 e107.en_US
dc.identifier.citedreferenceBavari S. Bosio C.M. Wiegand E. Ruthel G. Will A.B. Geisbert T.W. Hevey M. Schmaljohn C. Schmaljohn A. Aman M.J. Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses J. Exp. Med. 2002 195 593 – 602.en_US
dc.identifier.citedreferenceBennett A.E. Narayan K. Shi D. Hartnell L.M. Gousset K. He H. Lowekamp B.C. Yoo T.S. Bliss D. Freed E.O. Subramaniam S. Ion‐abrasion scanning electron microscopy reveals surface‐connected tubular conduits in HIV‐infected macrophages PLoS Pathog. 2009 5 e1000591.en_US
dc.identifier.citedreferenceBerditchevski F. Odintsova E. Tetraspanins as regulators of protein trafficking Traffic 2007 8 89 – 96.en_US
dc.identifier.citedreferenceBhattacharya B. Roy P. Bluetongue virus outer capsid protein VP5 interacts with membrane lipid rafts via a SNARE domain J. Virol. 2008 82 10600 – 10612.en_US
dc.identifier.citedreferenceBhattacharya J. Peters P.J. Clapham P.R. Human immunodeficiency virus type1 envelope glycoproteins that lack cytoplasmic domain cysteines: impact on association with membrane lipid rafts and incorporation onto budding virus particles J. Virol. 2004 78 5500 – 5506.en_US
dc.identifier.citedreferenceBhattacharya J. Repik A. Clapham P.R. Gag regulates association of human immunodeficiency virus type1 envelope with detergent‐resistant membranes J. Virol. 2006 80 5292 – 5300.en_US
dc.identifier.citedreferenceBooth A.M. Fang Y. Fallon J.K. Yang J.M. Hildreth J.E. Gould S.J. Exosomes and HIV Gag bud from endosome‐like domains of the T cell plasma membrane J. Cell Biol. 2006 172 923 – 935.en_US
dc.identifier.citedreferenceBriggs J.A. Wilk T. Fuller S.D. Do lipid rafts mediate virus assembly and pseudotyping? J. Gen. Virol. 2003 84 757 – 768.en_US
dc.identifier.citedreferenceBrown D.A. London E. Structure and function of sphingolipid‐ and cholesterol‐rich membrane rafts J. Biol. Chem. 2000 275 17221 – 17224.en_US
dc.identifier.citedreferenceBrown D.A. Rose J.K. Sorting of GPI‐anchored proteins to glycolipid‐enriched membrane subdomains during transport to the apical cell surface Cell 1992 68 533 – 544.en_US
dc.identifier.citedreferenceBrugger B. Glass B. Haberkant P. Leibrecht I. Wieland F.T. Krausslich H.G. The HIV lipidome: a raft with an unusual composition Proc. Natl. Acad. Sci. U.S.A. 2006 103 2641 – 2646.en_US
dc.identifier.citedreferenceBryant M. Ratner L. Myristoylation‐dependent replication and assembly of human immunodeficiency virus 1 Proc. Natl. Acad. Sci. U.S.A. 1990 87 523 – 527.en_US
dc.identifier.citedreferenceCahalan M.D. Parker I. Choreography of cell motility and interaction dynamics imaged by two‐photon microscopy in lymphoid organs Annu. Rev. Immunol. 2008 26 585 – 626.en_US
dc.identifier.citedreferenceChan R. Uchil P.D. Jin J. Shui G. Ott D.E. Mothes W. Wenk M.R. Retroviruses human immunodeficiency virus and murine leukemia virus are enriched in phosphoinositides J. Virol. 2008 82 11228 – 11238.en_US
dc.identifier.citedreferenceCharrin S. Manie S. Oualid M. Billard M. Boucheix C. Rubinstein E. Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation FEBS Lett. 2002 516 139 – 144.en_US
dc.identifier.citedreferenceCharrin S. Manie S. Billard M. Ashman L. Gerlier D. Boucheix C. Rubinstein E. Multiple levels of interactions within the tetraspanin web Biochem. Biophys. Res. Commun. 2003 304 107 – 112.en_US
dc.identifier.citedreferenceCharrin S. le Naour F. Silvie O. Milhiet P.E. Boucheix C. Rubinstein E. Lateral organization of membrane proteins: tetraspanins spin their web Biochem. J. 2009 420 133 – 154.en_US
dc.identifier.citedreferenceChen H. Dziuba N. Friedrich B. von Lindern J. Murray J.L. Rojo D.R. Hodge T.W. O'Brien W.A. Ferguson M.R. A critical role for CD63 in HIV replication and infection of macrophages and cell lines Virology 2008 379 191 – 196.en_US
dc.identifier.citedreferenceChen P. Hubner W. Spinelli M.A. Chen B.K. Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env‐dependent neutralization‐resistant virological synapses J. Virol. 2007 81 12582 – 12595.en_US
dc.identifier.citedreferenceChertova E. Chertov O. Coren L.V. Roser J.D. Trubey C.M. Bess J.W. Jr Sowder R.C. II Barsov E. Hood B.L. Fisher R.J. et al Proteomic and biochemical analysis of purified human immunodeficiency virus type1 produced from infected monocyte‐derived macrophages J. Virol. 2006 80 9039 – 9052.en_US
dc.identifier.citedreferenceChukkapalli V. Hogue I.B. Boyko V. Hu W.S. Ono A. Interaction between the human immunodeficiency virus type1 Gag matrix domain and phosphatidylinositol‐(4,5)‐bisphosphate is essential for efficient gag membrane binding J. Virol. 2008 82 2405 – 2417.en_US
dc.identifier.citedreferenceChukkapalli V. Oh S.J. Ono A. Opposing mechanisms involving RNA and lipids regulate HIV‐1 Gag membrane binding through the highly basic region of the matrix domain Proc. Natl. Acad. Sci. U.S.A. 2010 107 1600 – 1605.en_US
dc.identifier.citedreferenceClaas C. Stipp C.S. Hemler M.E. Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts J. Biol. Chem. 2001 276 7974 – 7984.en_US
dc.identifier.citedreferenceDalton A.K. Ako‐Adjei D. Murray P.S. Murray D. Vogt V.M. Electrostatic interactions drive membrane association of the human immunodeficiency virus type1 Gag MA domain J. Virol. 2007 81 6434 – 6445.en_US
dc.identifier.citedreferenceDay C.A. Kenworthy A.K. Tracking microdomain dynamics in cell membranes Biochim. Biophys. Acta 2009 1788 245 – 253.en_US
dc.identifier.citedreferenceDeneka M. Pelchen‐Matthews A. Byland R. Ruiz‐Mateos E. Marsh M. In macrophages, HIV‐1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9 and CD53 J. Cell Biol. 2007 177 329 – 341.en_US
dc.identifier.citedreferenceDeschambeault J. Lalonde J.P. Cervantes‐Acosta G. Lodge R. Cohen E.A. Lemay G. Polarized human immunodeficiency virus budding in lymphocytes involves a tyrosine‐based signal and favors cell‐to‐cell viral transmission J. Virol. 1999 73 5010 – 5017.en_US
dc.identifier.citedreferenceDing L. Derdowski A. Wang J.J. Spearman P. Independent segregation of human immunodeficiency virus type1 Gag protein complexes and lipid rafts J. Virol. 2003 77 1916 – 1926.en_US
dc.identifier.citedreferenceDou J. Wang J.J. Chen X. Li H. Ding L. Spearman P. Characterization of a myristoylated, monomeric HIV Gag protein Virology 2009 387 341 – 352.en_US
dc.identifier.citedreferenceDouglas J.L. Viswanathan K. McCarroll M.N. Gustin J.K. Fruh K. Moses A.V. Vpu directs the degradation of the human immunodeficiency virus restriction factor BST‐2/tetherin via a βTrCP‐dependent mechanism J. Virol. 2009 83 7931 – 7947.en_US
dc.identifier.citedreferenceDouglass A.D. Vale R.D. Single‐molecule microscopy reveals plasma membrane microdomains created by protein–protein networks that exclude or trap signaling molecules in T cells Cell 2005 121 937 – 950.en_US
dc.identifier.citedreferenceDube M. Roy B.B. Guiot‐Guillain P. Mercier J. Binette J. Leung G. Cohen E.A. Suppression of tetherin‐restricting activity upon human immunodeficiency virus type1 particle release correlates with localization of Vpu in the trans‐Golgi network J. Virol. 2009 83 4574 – 4590.en_US
dc.identifier.citedreferenceEdidin M. The state of lipid rafts: from model membranes to cells Annu. Rev. Biophys. Biomol. Struct. 2003 32 257 – 283.en_US
dc.identifier.citedreferenceEggeling C. Ringemann C. Medda R. Schwarzmann G. Sandhoff K. Polyakova S. Belov V.N. Hein B. von Middendorff C. Schonle A. Hell S.W. Direct observation of the nanoscale dynamics of membrane lipids in a living cell Nature 2009 457 1159 – 1162.en_US
dc.identifier.citedreferenceEspenel C. Margeat E. Dosset P. Arduise C. Le Grimellec C. Royer C.A. Boucheix C. Rubinstein E. Milhiet P.E. Single‐molecule analysis of CD9 dynamics and partitioning reveals multiple modes of interaction in the tetraspanin web J. Cell Biol. 2008 182 765 – 776.en_US
dc.identifier.citedreferenceFais S. Capobianchi M.R. Abbate I. Castilletti C. Gentile M. Fei P. Cordiali Ameglio F. Dianzani F. Unidirectional budding of HIV‐1 at the site of cell‐to‐cell contact is associated with co‐polarization of intercellular adhesion molecules and HIV‐1 viral matrix protein AIDS 1995 9 329 – 335.en_US
dc.identifier.citedreferenceFang Y. Wu N. Gan X. Yan W. Morrell J.C. Gould S.J. Higher‐order oligomerization targets plasma membrane proteins and HIV gag to exosomes PLoS Biol. 2007 5 e158.en_US
dc.identifier.citedreferenceFavoreel H.W. Mettenleiter T.C. Nauwynck H.J. Copatching and lipid raft association of different viral glycoproteins expressed on the surfaces of pseudorabies virus‐infected cells J. Virol. 2004 78 5279 – 5287.en_US
dc.identifier.citedreferenceFeng X. Heyden N.V. Ratner L. α‐Interferon inhibits human T‐cell leukemia virus type1 assembly by preventing Gag interaction with rafts J. Virol. 2003 77 13389 – 13395.en_US
dc.identifier.citedreferenceGaus K. Chklovskaia E. de St Groth B. Fazekas Jessup W. Harder T. Condensation of the plasma membrane at the site of T lymphocyte activation J. Cell Biol. 2005 171 121 – 131.en_US
dc.identifier.citedreferenceGermain R.N. Miller M.J. Dustin M.L. Nussenzweig M.C. Dynamic imaging of the immune system: progress, pitfalls and promise Nat. Rev. Immunol. 2006 6 497 – 507.en_US
dc.identifier.citedreferenceGoffinet C. Allespach I. Homann S. Tervo H.M. Habermann A. Rupp D. Oberbremer L. Kern C. Tibroni N. Welsch S. et al HIV‐1 antagonism of CD317 is species specific and involves Vpu‐mediated proteasomal degradation of the restriction factor Cell Host Microbe 2009 5 285 – 297.en_US
dc.identifier.citedreferenceGomez C.Y. Hope T.J. Mobility of human immunodeficiency virus type1 Pr55Gag in living cells J. Virol. 2006 80 8796 – 8806.en_US
dc.identifier.citedreferenceGomez‐Mouton C. Abad J.L. Mira E. Lacalle R.A. Gallardo E. Jimenez‐Baranda S. Illa I. Bernad A. Manes S. Martinez A.C. Segregation of leading‐edge and uropod components into specific lipid rafts during T cell polarization Proc. Natl. Acad. Sci. U.S.A. 2001 98 9642 – 9647.en_US
dc.identifier.citedreferenceGottlinger H.G. Sodroski J.G. Haseltine W.A. Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type1 Proc. Natl. Acad. Sci. U.S.A. 1989 86 5781 – 5785.en_US
dc.identifier.citedreferenceGraham D.R. Chertova E. Hilburn J.M. Arthur L.O. Hildreth J.E. Cholesterol depletion of human immunodeficiency virus type1 and simian immunodeficiency virus with β‐cyclodextrin inactivates and permeabilizes the virions: evidence for virion‐associated lipid rafts J. Virol. 2003 77 8237 – 8248.en_US
dc.identifier.citedreferenceGri G. Molon B. Manes S. Pozzan T. Viola A. The inner side of T cell lipid rafts Immunol. Lett. 2004 94 247 – 252.en_US
dc.identifier.citedreferenceGrigorov B. Attuil‐Audenis V. Perugi F. Nedelec M. Watson S. Pique C. Darlix J.L. Conjeaud H. Muriaux D. A role for CD81 on the late steps of HIV‐1 replication in a chronically infected T cell line Retrovirology 2009 6 28.en_US
dc.identifier.citedreferenceGupta R.K. Hue S. Schaller T. Verschoor E. Pillay D. Towers G.J. Mutation of a single residue renders human tetherin resistant to HIV‐1 Vpu‐mediated depletion PLoS Pathog. 2009 5 e1000443.en_US
dc.identifier.citedreferenceHaller C. Fackler O.T. HIV‐1 at the immunological and T‐lymphocytic virological synapse Biol. Chem. 2008 389 1253 – 1260.en_US
dc.identifier.citedreferenceHalwani R. Khorchid A. Cen S. Kleiman L. Rapid localization of Gag/GagPol complexes to detergent‐resistant membrane during the assembly of human immunodeficiency virus type1 J. Virol. 2003 77 3973 – 3984.en_US
dc.identifier.citedreferenceHamard‐Peron E. Juillard F. Saad J.S. Roy C. Roingeard P. Summers M.F. Darlix J.L. Picart C. Muriaux D. Targeting of murine leukemia virus gag to the plasma membrane is mediated by PI(4,5)P 2 /PS and a polybasic region in the matrix J. Virol. 2010 84 503 – 515.en_US
dc.identifier.citedreferenceHancock J.F. Lipid rafts: contentious only from simplistic standpoints Nat. Rev. Mol. Cell Biol. 2006 7 456 – 462.en_US
dc.identifier.citedreferenceHarder T. Scheiffele P. Verkade P. Simons K. Lipid domain structure of the plasma membrane revealed by patching of membrane components J. Cell Biol. 1998 141 929 – 942.en_US
dc.identifier.citedreferenceHarila K. Salminen A. Prior I. Hinkula J. Suomalainen M. The Vpu‐regulated endocytosis of HIV‐1 Gag is clathrin‐independent Virology 2007 369 299 – 308.en_US
dc.identifier.citedreferenceHemler M.E. Tetraspanin functions and associated microdomains Nat. Rev. Mol. Cell Biol. 2005 6 801 – 811.en_US
dc.identifier.citedreferenceHenderson G. Murray J. Yeo R.P. Sorting of the respiratory syncytial virus matrix protein into detergent‐resistant structures is dependent on cell‐surface expression of the glycoproteins Virology 2002 300 244 – 254.en_US
dc.identifier.citedreferenceHill C.P. Worthylake D. Bancroft D.P. Christensen A.M. Sundquist W.I. Crystal structures of the trimeric human immunodeficiency virus type1 matrix protein: implications for membrane association and assembly Proc. Natl. Acad. Sci. U.S.A. 1996 93 3099 – 3104.en_US
dc.identifier.citedreferenceHogue I.B. Hoppe A. Ono A. Quantitative fluorescence resonance energy transfer microscopy analysis of the human immunodeficiency virus type1 Gag–Gag interaction: relative contributions of the CA and NC domains and membrane binding J. Virol. 2009 83 7322 – 7336.en_US
dc.identifier.citedreferenceHolm K. Weclewicz K. Hewson R. Suomalainen M. Human immunodeficiency virus type1 assembly and lipid rafts: Pr55(gag) associates with membrane domains that are largely resistant to Brij98 but sensitive to Triton X‐100 J. Virol. 2003 77 4805 – 4817.en_US
dc.identifier.citedreferenceHubner W. McNerney G.P. Chen P. Dale B.M. Gordon R.E. Chuang F.Y. Li X.D. Asmuth D.M. Huser T. Chen B.K. Quantitative 3D video microscopy of HIV transfer across T cell virological synapses Science 2009 323 1743 – 1747.en_US
dc.identifier.citedreferenceIgakura T. Stinchcombe J.C. Goon P.K. Taylor G.P. Weber J.N. Griffiths G.M. Tanaka Y. Osame M. Bangham C.R. Spread of HTLV‐I between lymphocytes by virus‐induced polarization of the cytoskeleton Science 2003 299 1713 – 1716.en_US
dc.identifier.citedreferenceJacobson K. Mouritsen O.G. Anderson R.G. Lipid rafts: at a crossroad between cell biology and physics Nat. Cell Biol. 2007 9 7 – 14.en_US
dc.identifier.citedreferenceJanes P.W. Ley S.C. Magee A.I. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor J. Cell Biol. 1999 147 447 – 461.en_US
dc.identifier.citedreferenceJin J. Sherer N.M. Heidecker G. Derse D. Mothes W. Assembly of the murine leukemia virus is directed towards sites of cell–cell contact PLoS Biol. 2009 7 e1000163.en_US
dc.identifier.citedreferenceJolly C. Sattentau Q.J. Human immunodeficiency virus type1 virological synapse formation in T cells requires lipid raft integrity J. Virol. 2005 79 12088 – 12094.en_US
dc.identifier.citedreferenceJolly C. Sattentau Q.J. Human immunodeficiency virus type1 assembly, budding, and cell–cell spread in T cells take place in tetraspanin‐enriched plasma membrane domains J. Virol. 2007 81 7873 – 7884.en_US
dc.identifier.citedreferenceJolly C. Kashefi K. Hollinshead M. Sattentau Q.J. HIV‐1 cell to cell transfer across an Env‐induced, actin‐dependent synapse J. Exp. Med. 2004 199 283 – 293.en_US
dc.identifier.citedreferenceJolly C. Mitar I. Sattentau Q.J. Adhesion molecule interactions facilitate human immunodeficiency virus type1‐induced virological synapse formation between T cells J. Virol. 2007a 81 13916 – 13921.en_US
dc.identifier.citedreferenceJolly C. Mitar I. Sattentau Q.J. Requirement for an intact T‐cell actin and tubulin cytoskeleton for efficient assembly and spread of human immunodeficiency virus type1 J. Virol. 2007b 81 5547 – 5560.en_US
dc.identifier.citedreferenceJorgenson R.L. Vogt V.M. Johnson M.C. Foreign glycoproteins can be actively recruited to virus assembly sites during pseudotyping J. Virol. 2009 83 4060 – 4067.en_US
dc.identifier.citedreferenceJouve M. Sol‐Foulon N. Watson S. Schwartz O. Benaroch P. HIV‐1 buds and accumulates in ‘nonacidic’ endosomes of macrophages Cell Host Microbe 2007 2 85 – 95.en_US
dc.identifier.citedreferenceJouvenet N. Neil S.J. Zhadina M. Zang T. Kratovac Z. Lee Y. McNatt M. Hatziioannou T. Bieniasz P.D. Broad‐spectrum inhibition of retroviral and filoviral particle release by tetherin J. Virol. 2009a 83 1837 – 1844.en_US
dc.identifier.citedreferenceJouvenet N. Neil S.J. Zhadina M. Zang T. Kratovac Z. Lee Y. McNatt M. Hatziioannou T. Bieniasz P.D. Broad‐spectrum inhibition of retroviral and filoviral particle release by tetherin J. Virol. 2009b 83 1837 – 1844.en_US
dc.identifier.citedreferenceKaletsky R.L. Francica J.R. Agrawal‐Gamse C. Bates P. Tetherin‐mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein Proc. Natl. Acad. Sci. U.S.A. 2009 106 2886 – 2891.en_US
dc.identifier.citedreferenceKhurana S. Krementsov D.N. de Parseval A. Elder J.H. Foti M. Thali M. Human immunodeficiency virus type1 and influenza virus exit via different membrane microdomains J. Virol. 2007 81 12630 – 12640.en_US
dc.identifier.citedreferenceKlimkait T. Strebel K. Hoggan M.D. Martin M.A. Orenstein J.M. The human immunodeficiency virus type1‐specific protein Vpu is required for efficient virus maturation and release J. Virol. 1990 64 621 – 629.en_US
dc.identifier.citedreferenceKrementsov D.N. Weng J. Lambele M. Roy N.H. Thali M. Tetraspanins regulate cell‐to‐cell transmission of HIV‐1 Retrovirology 2009 6 64.en_US
dc.identifier.citedreferenceKrummel M.F. Macara I. Maintenance and modulation of T cell polarity Nat. Immunol. 2006 7 1143 – 1149.en_US
dc.identifier.citedreferenceKupzig S. Korolchuk V. Rollason R. Sugden A. Wilde A. Banting G. BST‐2/HM1.24 is a raft‐associated apical membrane protein with an unusual topology Traffic 2003 4 694 – 709.en_US
dc.identifier.citedreferenceKusumi A. Koyama‐Honda I. Suzuki K. Molecular dynamics and interactions for creation of stimulation‐induced stabilized rafts from small unstable steady‐state rafts Traffic 2004 5 213 – 230.en_US
dc.identifier.citedreferenceLanghorst M.F. Reuter A. Stuermer C.A. Scaffolding microdomains and beyond: the function of reggie/flotillin proteins Cell. Mol. Life Sci. 2005 62 2228 – 2240.en_US
dc.identifier.citedreferenceLarson D.R. Gosse J.A. Holowka D.A. Baird B.A. Webb W.W. Temporally resolved interactions between antigen‐stimulated IgE receptors and Lyn kinase on living cells J. Cell Biol. 2005 171 527 – 536.en_US
dc.identifier.citedreferenceLe Naour F. Andre M. Boucheix C. Rubinstein E. Membrane microdomains and proteomics: lessons from tetraspanin microdomains and comparison with lipid rafts Proteomics 2006 6 6447 – 6454.en_US
dc.identifier.citedreferenceLee G.E. Church G.A. Wilson D.W. A subpopulation of tegument protein vhs localizes to detergent‐insoluble lipid rafts in herpes simplex virus‐infected cells J. Virol. 2003 77 2038 – 2045.en_US
dc.identifier.citedreferenceLeser G.P. Lamb R.A. Influenza virus assembly and budding in raft‐derived microdomains: a quantitative analysis of the surface distribution of HA, NA and M2 proteins Virology 2005 342 215 – 227.en_US
dc.identifier.citedreferenceLeung K. Kim J.O. Ganesh L. Kabat J. Schwartz O. Nabel G.J. HIV‐1 assembly: viral glycoproteins segregate quantally to lipid rafts that associate individually with HIV‐1 capsids and virions Cell Host Microbe 2008 3 285 – 292.en_US
dc.identifier.citedreferenceLevy S. Shoham T. The tetraspanin web modulates immune‐signalling complexes Nat. Rev. Immunol. 2005 5 136 – 148.en_US
dc.identifier.citedreferenceLichtenberg D. Goni F.M. Heerklotz H. Detergent‐resistant membranes should not be identified with membrane rafts Trends Biochem. Sci. 2005 30 430 – 436.en_US
dc.identifier.citedreferenceLindwasser O.W. Resh M.D. Multimerization of human immunodeficiency virus type1 Gag promotes its localization to barges, raft‐like membrane microdomains J. Virol. 2001 75 7913 – 7924.en_US
dc.identifier.citedreferenceLindwasser O.W. Resh M.D. Myristoylation as a target for inhibiting HIV assembly: unsaturated fatty acids block viral budding Proc. Natl. Acad. Sci. U.S.A. 2002 99 13037 – 13042.en_US
dc.identifier.citedreferenceLingwood D. Ries J. Schwille P. Simons K. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature Proc. Natl. Acad. Sci. U.S.A. 2008 105 10005 – 10010.en_US
dc.identifier.citedreferenceLondon E. Brown D.A. Insolubility of lipids in Triton X‐100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts) Biochim. Biophys. Acta 2000 1508 182 – 195.en_US
dc.identifier.citedreferenceLorizate M. Brugger B. Akiyama H. Glass B. Muller B. Anderluh G. Wieland F.T. Krausslich H.G. Probing HIV‐1 membrane liquid order by Laurdan staining reveals producer cell‐dependent differences J. Biol. Chem. 2009 284 22238 – 22247.en_US
dc.identifier.citedreferenceLyman M.G. Curanovic D. Enquist L.W. Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts PLoS Pathog. 2008 4 e1000065.en_US
dc.identifier.citedreferenceManie S.N. Debreyne S. Vincent S. Gerlier D. Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly J. Virol. 2000 74 305 – 311.en_US
dc.identifier.citedreferenceMayor S. Rao M. Rafts: scale‐dependent, active lipid organization at the cell surface Traffic 2004 5 231 – 240.en_US
dc.identifier.citedreferenceMazurov D. Heidecker G. Derse D. HTLV‐1 Gag protein associates with CD82 tetraspanin microdomains at the plasma membrane Virology 2006 346 194 – 204.en_US
dc.identifier.citedreferenceMcCurdy L.H. Graham B.S. Role of plasma membrane lipid microdomains in respiratory syncytial virus filament formation J. Virol. 2003 77 1747 – 1756.en_US
dc.identifier.citedreferenceMcNatt M.W. Zang T. Hatziioannou T. Bartlett M. Fofana I.B. Johnson W.E. Neil S.J. Bieniasz P.D. Species‐specific activity of HIV‐1 Vpu and positive selection of tetherin transmembrane domain variants PLoS Pathog. 2009 5 e1000300.en_US
dc.identifier.citedreferenceMeder D. Moreno M.J. Verkade P. Vaz W.L. Simons K. Phase coexistence and connectivity in the apical membrane of polarized epithelial cells Proc. Natl. Acad. Sci. U.S.A. 2006 103 329 – 334.en_US
dc.identifier.citedreferenceMedina G. Pincetic A. Ehrlich L.S. Zhang Y. Tang Y. Leis J. Carter C.A. Tsg101 can replace Nedd4 function in ASV Gag release but not membrane targeting Virology 2008 377 30 – 38.en_US
dc.identifier.citedreferenceMelkonian K.A. Ostermeyer A.G. Chen J.Z. Roth M.G. Brown D.A. Role of lipid modifications in targeting proteins to detergent‐resistant membrane rafts. Many raft proteins are acylated, while few are prenylated J. Biol. Chem. 1999 274 3910 – 3917.en_US
dc.identifier.citedreferenceMetzner C. Salmons B. Gunzburg W.H. Dangerfield J.A. Rafts, anchors and viruses—a role for glycosylphosphatidylinositol anchored proteins in the modification of enveloped viruses and viral vectors Virology 2008 382 125 – 131.en_US
dc.identifier.citedreferenceMitchell R.S. Katsura C. Skasko M.A. Fitzpatrick K. Lau D. Ruiz A. Stephens E.B. Margottin‐Goguet F. Benarous R. Guatelli J.C. Vpu antagonizes BST‐2‐mediated restriction of HIV‐1 release via β‐TrCP and endo‐lysosomal trafficking PLoS Pathog. 2009 5 e1000450.en_US
dc.identifier.citedreferenceMiyagi E. Andrew A.J. Kao S. Strebel K. Vpu enhances HIV‐1 virus release in the absence of BST‐2 cell surface down‐modulation and intracellular depletion Proc. Natl. Acad. Sci. U.S.A. 2009 106 2868 – 2873.en_US
dc.identifier.citedreferenceMorrow I.C. Parton R.G. Flotillins and the PHB domain protein family: rafts, worms and anaesthetics Traffic 2005 6 725 – 740.en_US
dc.identifier.citedreferenceMunro S. Lipid rafts: elusive or illusive? Cell 2003 115 377 – 388.en_US
dc.identifier.citedreferenceNeil S.J. Eastman S.W. Jouvenet N. Bieniasz P.D. HIV‐1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane PLoS Pathog. 2006 2 e39.en_US
dc.identifier.citedreferenceNeil S.J. Sandrin V. Sundquist W.I. Bieniasz P.D. An interferon‐alpha‐induced tethering mechanism inhibits HIV‐1 and Ebola virus particle release but is counteracted by the HIV‐1 Vpu protein Cell Host Microbe 2007 2 193 – 203.en_US
dc.identifier.citedreferenceNeil S.J. Zang T. Bieniasz P.D. Tetherin inhibits retrovirus release and is antagonized by HIV‐1 Vpu Nature 2008 451 425 – 430.en_US
dc.identifier.citedreferenceNguyen D.G. Booth A. Gould S.J. Hildreth J.E. Evidence that HIV budding in primary macrophages occurs through the exosome release pathway J. Biol. Chem. 2003 278 52347 – 52354.en_US
dc.identifier.citedreferenceNguyen D.H. Hildreth J.E. Evidence for budding of human immunodeficiency virus type1 selectively from glycolipid‐enriched membrane lipid rafts J. Virol. 2000 74 3264 – 3272.en_US
dc.identifier.citedreferenceNitta T. Kuznetsov Y. McPherson A. Fan H. Murine leukemia virus glycosylated Gag (gPr80gag) facilitates interferon‐sensitive virus release through lipid rafts Proc. Natl. Acad. Sci. U.S.A. 2010 107 1190 – 1195.en_US
dc.identifier.citedreferenceNydegger S. Khurana S. Krementsov D.N. Foti M. Thali M. Mapping of tetraspanin‐enriched microdomains that can function as gateways for HIV‐1 J. Cell Biol. 2006 173 795 – 807.en_US
dc.identifier.citedreferenceOno A. HIV‐1 assembly at the plasma membrane: Gag trafficking and localization Future Virol. 2009 4 241 – 257.en_US
dc.identifier.citedreferenceOno A. Freed E.O. Plasma membrane rafts play a critical role in HIV‐1 assembly and release Proc. Natl. Acad. Sci. U.S.A. 2001 98 13925 – 13930.en_US
dc.identifier.citedreferenceOno A. Freed E.O. Role of lipid rafts in virus replication Adv. Virus Res. 2005 64 311 – 358.en_US
dc.identifier.citedreferenceOno A. Ablan S.D. Lockett S.J. Nagashima K. Freed E.O. Phosphatidylinositol (4,5) bisphosphate regulates HIV‐1 Gag targeting to the plasma membrane Proc. Natl. Acad. Sci. U.S.A. 2004 101 14889 – 14894.en_US
dc.identifier.citedreferenceOno A. Waheed A.A. Joshi A. Freed E.O. Association of human immunodeficiency virus type1 gag with membrane does not require highly basic sequences in the nucleocapsid: use of a novel Gag multimerization assay J. Virol. 2005 79 14131 – 14140.en_US
dc.identifier.citedreferenceOno A. Waheed A.A. Freed E.O. Depletion of cellular cholesterol inhibits membrane binding and higher‐order multimerization of human immunodeficiency virus type1 Gag Virology 2007 360 27 – 35.en_US
dc.identifier.citedreferenceOtt D.E. Cellular proteins detected in HIV‐1 Rev. Med. Virol. 2008 18 159 – 175.en_US
dc.identifier.citedreferencePanchal R.G. Ruthel G. Kenny T.A. Kallstrom G.H. Lane D. Badie S.S. Li L. Bavari S. Aman M.J. In vivo oligomerization and raft localization of Ebola virus protein VP40 during vesicular budding Proc. Natl. Acad. Sci. U.S.A. 2003 100 15936 – 15941.en_US
dc.identifier.citedreferenceParton R.G. Simons K. The multiple faces of caveolae Nat. Rev. Mol. Cell Biol. 2007 8 185 – 194.en_US
dc.identifier.citedreferencePelchen‐Matthews A. Kramer B. Marsh M. Infectious HIV‐1 assembles in late endosomes in primary macrophages J. Cell Biol. 2003 162 443 – 455.en_US
dc.identifier.citedreferencePerez‐Caballero D. Zang T. Ebrahimi A. McNatt M.W. Gregory D.A. Johnson M.C. Bieniasz P.D. Tetherin inhibits HIV‐1 release by directly tethering virions to cells Cell 2009 139 499 – 511.en_US
dc.identifier.citedreferencePike L.J. Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function J. Lipid Res. 2006 47 1597 – 1598.en_US
dc.identifier.citedreferencePralle A. Keller P. Florin E.L. Simons K. Horber J.K. Sphingolipid‐cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells J. Cell Biol. 2000 148 997 – 1008.en_US
dc.identifier.citedreferencePrior I.A. Muncke C. Parton R.G. Hancock J.F. Direct visualization of Ras proteins in spatially distinct cell surface microdomains J. Cell Biol. 2003 160 165 – 170.en_US
dc.identifier.citedreferencePuigdomenech I. Massanella M. Izquierdo‐Useros N. Ruiz‐Hernandez R. Curriu M. Bofill M. Martinez‐Picado J. Juan M. Clotet B. Blanco J. HIV transfer between CD4 T cells does not require LFA‐1 binding to ICAM‐1 and is governed by the interaction of HIV envelope glycoprotein with CD4 Retrovirology 2008 5 32.en_US
dc.identifier.citedreferenceRaposo G. Moore M. Innes D. Leijendekker R. Leigh‐Brown A. Benaroch P. Geuze H. Human macrophages accumulate HIV‐1 particles in MHC II compartments Traffic 2002 3 718 – 729.en_US
dc.identifier.citedreferenceRollason R. Korolchuk V. Hamilton C. Schu P. Banting G. Clathrin‐mediated endocytosis of a lipid‐raft‐associated protein is mediated through a dual tyrosine motif J. Cell Sci. 2007 120 3850 – 3858.en_US
dc.identifier.citedreferenceRong L. Zhang J. Lu J. Pan Q. Lorgeoux R.P. Aloysius C. Guo F. Liu S.L. Wainberg M.A. Liang C. The transmembrane domain of BST‐2 determines its sensitivity to down‐modulation by human immunodeficiency virus type1 Vpu J. Virol. 2009 83 7536 – 7546.en_US
dc.identifier.citedreferenceRossy J. Schlicht D. Engelhardt B. Niggli V. Flotillins interact with PSGL‐1 in neutrophils and, upon stimulation, rapidly organize into membrane domains subsequently accumulating in the uropod PLoS One 2009 4 e5403.en_US
dc.identifier.citedreferenceRudnicka D. Feldmann J. Porrot F. Wietgrefe S. Guadagnini S. Prevost M.C. Estaquier J. Haase A.T. Sol‐Foulon N. Schwartz O. Simultaneous cell‐to‐cell transmission of human immunodeficiency virus to multiple targets through polysynapses J. Virol. 2009 83 6234 – 6246.en_US
dc.identifier.citedreferenceRuiz‐Mateos E. Pelchen‐Matthews A. Deneka M. Marsh M. CD63 is not required for production of infectious human immunodeficiency virus type1 in human macrophages J. Virol. 2008 82 4751 – 4761.en_US
dc.identifier.citedreferenceSaad J.S. Miller J. Tai J. Kim A. Ghanam R.H. Summers M.F. Structural basis for targeting HIV‐1 Gag proteins to the plasma membrane for virus assembly Proc. Natl. Acad. Sci. U.S.A. 2006 103 11364 – 11369.en_US
dc.identifier.citedreferenceSaad J.S. Ablan S.D. Ghanam R.H. Kim A. Andrews K. Nagashima K. Soheilian F. Freed E.O. Summers M.F. Structure of the myristylated human immunodeficiency virus type2 matrix protein and the role of phosphatidylinositol(4,5)‐bisphosphate in membrane targeting J. Mol. Biol. 2008 382 434 – 447.en_US
dc.identifier.citedreferenceSaifuddin M. Parker C.J. Peeples M.E. Gorny M.K. Zolla‐Pazner S. Ghassemi M. Rooney I.A. Atkinson J.P. Spear G.T. Role of virion‐associated glycosylphosphatidylinositollinked proteins CD55 and CD59 in complement resistance of cell line‐derived and primary isolates of HIV‐1 J. Exp. Med. 1995 182 501 – 509.en_US
dc.identifier.citedreferenceSakuma T. Noda T. Urata S. Kawaoka Y. Yasuda J. Inhibition of Lassa and Marburg virus production by tetherin J. Virol. 2009 83 2382 – 2385.en_US
dc.identifier.citedreferenceSala‐Valdes M. Ursa A. Charrin S. Rubinstein E. Hemler M.E. Sanchez‐Madrid F. Yanez‐Mo M. EWI‐2 and EWI‐F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin–radixin–moesin proteins J. Biol. Chem. 2006 281 19665 – 19675.en_US
dc.identifier.citedreferenceSanchez‐Madrid F. Serrador J.M. Bringing up the rear: defining the roles of the uropod Nat. Rev. Mol. Cell Biol. 2009 10 353 – 359.en_US
dc.identifier.citedreferenceSanderson C.M. Avalos R. Kundu A. Nayak D.P. Interaction of Sendai viral F, HN, and M proteins with host cytoskeletal and lipid components in Sendai virus‐infected BHK cells Virology 1995 209 701 – 707.en_US
dc.identifier.citedreferenceSato H. Orenstein J. Dimitrov D. Martin M. Cell‐to‐cell spread of HIV‐1 occurs within minutes and may not involve the participation of virus particles Virology 1992 186 712 – 724.en_US
dc.identifier.citedreferenceSato K. Aoki J. Misawa N. Daikoku E. Sano K. Tanaka Y. Koyanagi Y. Modulation of human immunodeficiency virus type1 infectivity through incorporation of tetraspanin proteins J. Virol. 2008 82 1021 – 1033.en_US
dc.identifier.citedreferenceSato K. Yamamoto S.P. Misawa N. Yoshida T. Miyazawa T. Koyanagi Y. Comparative study on the effect of human BST‐2/tetherin on HIV‐1 release in cells of various species Retrovirology 2009 6 53.en_US
dc.identifier.citedreferenceSattentau Q. Avoiding the void: cell‐to‐cell spread of human viruses Nat. Rev. Microbiol. 2008 6 815 – 826.en_US
dc.identifier.citedreferenceScheiffele P. Rietveld A. Wilk T. Simons K. Influenza viruses select ordered lipid domains during budding from the plasma membrane J. Biol. Chem. 1999 274 2038 – 2044.en_US
dc.identifier.citedreferenceSharma P. Varma R. Sarasij R.C. Gousset K. Ira Krishnamoorthy G. Rao M. Mayor S. Nanoscale organization of multiple GPI‐anchored proteins in living cell membranes Cell 2004 116 577 – 589.en_US
dc.identifier.citedreferenceSherer N.M. Mothes W. Cytonemes and tunneling nanotubules in cell–cell communication and viral pathogenesis Trends Cell Biol. 2008 18 414 – 420.en_US
dc.identifier.citedreferenceSherer N.M. Lehmann M.J. Jimenez‐Soto L.F. Horensavitz C. Pypaert M. Mothes W. Retroviruses can establish filopodial bridges for efficient cell‐to‐cell transmission Nat. Cell Biol. 2007 9 310 – 315.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.