Show simple item record

B lymphocytes as effector cells in the immunotherapy of cancer

dc.contributor.authorNamm, Jukes P.en_US
dc.contributor.authorLi, Qiaoen_US
dc.contributor.authorLao, Xiangmingen_US
dc.contributor.authorLubman, David M.en_US
dc.contributor.authorHe, Jintangen_US
dc.contributor.authorLiu, Yashuen_US
dc.contributor.authorZhu, Jianhuien_US
dc.contributor.authorWei, Shuangen_US
dc.contributor.authorChang, Alfred E.en_US
dc.date.accessioned2012-03-16T16:00:21Z
dc.date.available2013-05-01T17:24:41Zen_US
dc.date.issued2012-03-15en_US
dc.identifier.citationNamm, Jukes P.; Li, Qiao; Lao, Xiangming; Lubman, David M.; He, Jintang; Liu, Yashu; Zhu, Jianhui; Wei, Shuang; Chang, Alfred E. (2012). "B lymphocytes as effector cells in the immunotherapy of cancer." Journal of Surgical Oncology 105(4): 431-435. <http://hdl.handle.net/2027.42/90339>en_US
dc.identifier.issn0022-4790en_US
dc.identifier.issn1096-9098en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90339
dc.description.abstractOver the years, the role of B cells in the host immune response to malignancy has been overshadowed by our focus on T cells. Nevertheless, B cells play important roles as antigen‐presenting cells and in the production of antibodies. Furthermore, B cells can function as effector cells that mediate tumor destruction on their own. This review will highlight the various functions of B cells that are involved in the host response to tumor. J. Surg. Oncol. 2012;105:431–435. © 2011 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherB Cellsen_US
dc.subject.otherTumor Antigenen_US
dc.subject.otherAdoptive Immunotherapyen_US
dc.subject.otherAntibodyen_US
dc.titleB lymphocytes as effector cells in the immunotherapy of canceren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelOncology and Hematologyen_US
dc.subject.hlbsecondlevelSurgery and Anesthesiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan Comprehensive Cancer Center, Ann Arbor, Michiganen_US
dc.contributor.affiliationother3302 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI 48109. Fax: 734‐647‐9647.en_US
dc.contributor.affiliationotherSun Yat‐sen University Cancer Center & State Key Laboratory of Oncology in Southern China, Guangzhou, Chinaen_US
dc.contributor.affiliationotherDepartment of Surgery, Loma Linda University, Loma Linda, Californiaen_US
dc.identifier.pmid21898417en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90339/1/22093_ftp.pdf
dc.identifier.doi10.1002/jso.22093en_US
dc.identifier.sourceJournal of Surgical Oncologyen_US
dc.identifier.citedreferenceSchultze JL, Michalak S, Seamon MJ, et al.: CD40‐activated human B cells: An alternative source of highly efficient antigen presenting cells to generate autologous antigen‐specific T cells for adoptive immunotherapy. J Clin Invest 1997; 100: 2757 – 2765.en_US
dc.identifier.citedreferenceMizoguchi A, Bhan AK: A case for regulatory B cells. J Immunol 2006; 176: 705 – 710.en_US
dc.identifier.citedreferenceMauri C, Ehrenstein MR: The 'short' history of regulatory B cells. Trends Immunol 2008; 29: 34 – 40.en_US
dc.identifier.citedreferenceVetrie D, Vorechovsky I, Sideras P, et al.: The gene involved in X‐linked agammaglobulinaemia is a member of the src family of protein‐tyrosine kinases. Nature 1993; 361: 226 – 233.en_US
dc.identifier.citedreferenceTsukada S, Saffran DC, Rawlings DJ, et al.: Deficient expression of a B cell cytoplasmic tyrosine kinase in human X‐linked agammaglobulinemia. Cell 1993; 72: 279 – 290.en_US
dc.identifier.citedreferenceBacchelli C, Buckridge S, Thrasher AJ, et al.: Translational mini‐review series on immunodeficiency: Molecular defects in common variable immunodeficiency. Clin Exp Immunol 2007; 149: 401 – 409.en_US
dc.identifier.citedreferenceBrodt P, Gordon J: Anti‐tumor immunity in B lymphocyte‐deprived mice. I. Immunity to a chemically induced tumor. J Immunol 1978; 121: 359 – 362.en_US
dc.identifier.citedreferenceMonach PA, Schreiber H, Rowley DA: CD4+ and B lymphocytes in transplantation immunity. II. Augmented rejection of tumor allografts by mice lacking B cells. Transplantation 1993; 55: 1356 – 1361.en_US
dc.identifier.citedreferenceChapoval AI, Fuller JA, Kremlev SG, et al.: Combination chemotherapy and IL‐15 administration induce permanent tumor regression in a mouse lung tumor model: NK and T cell‐mediated effects antagonized by B cells. J Immunol 1998; 161: 6977 – 6984.en_US
dc.identifier.citedreferenceQin Z, Richter G, Schuler T, et al.: B cells inhibit induction of T cell‐dependent tumor immunity. Nat Med 1998; 4: 627 – 630.en_US
dc.identifier.citedreferencePerricone MA, Smith KA, Claussen KA, et al.: Enhanced efficacy of melanoma vaccines in the absence of B lymphocytes. J Immunother (1997) 2004; 27: 273 – 281.en_US
dc.identifier.citedreferenceShah S, Divekar AA, Hilchey SP, et al.: Increased rejection of primary tumors in mice lacking B cells: Inhibition of anti‐tumor CTL and TH1 cytokine responses by B cells. Int J Cancer 2005; 117: 574 – 586.en_US
dc.identifier.citedreferenceInoue S, Leitner WW, Golding B, et al.: Inhibitory effects of B cells on antitumor immunity. Cancer Res 2006; 66: 7741 – 7747.en_US
dc.identifier.citedreferenceWatt V, Ronchese F, Ritchie D: Resting B cells suppress tumor immunity via an MHC class‐II dependent mechanism. J Immunother (1997) 2007; 30: 323 – 332.en_US
dc.identifier.citedreferenceJoao C, Ogle BM, Gay‐Rabinstein C, et al.: B cell‐dependent TCR diversification. J Immunol 2004; 172: 4709 – 4716.en_US
dc.identifier.citedreferenceCrowley MT, Reilly CR, Lo D: Influence of lymphocytes on the presence and organization of dendritic cell subsets in the spleen. J Immunol 1999; 163: 4894 – 4900.en_US
dc.identifier.citedreferenceMoulin V, Andris F, Thielemans K, et al.: B lymphocytes regulate dendritic cell (DC) function in vivo: Increased interleukin 12 production by DCs from B cell‐deficient mice results in T helper cell type 1 deviation. J Exp Med 2000; 192: 475 – 482.en_US
dc.identifier.citedreferenceDiLillo DJ, Yanaba K, Tedder TF: B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: Therapeutic B cell depletion enhances B16 melanoma growth in mice. J Immunol 2010; 184: 4006 – 4016.en_US
dc.identifier.citedreferencevon Bergwelt‐Baildon MS, Vonderheide RH, Maecker B, et al.: Human primary and memory cytotoxic T lymphocyte responses are efficiently induced by means of CD40‐activated B cells as antigen‐presenting cells: Potential for clinical application. Blood 2002; 99: 3319 – 3325.en_US
dc.identifier.citedreferenceKondo E, Topp MS, Kiem HP, et al.: Efficient generation of antigen‐specific cytotoxic T cells using retrovirally transduced CD40‐activated B cells. J Immunol 2002; 169: 2164 – 2171.en_US
dc.identifier.citedreferenceLapointe R, Bellemare‐Pelletier A, Housseau F, et al.: CD40‐stimulated B lymphocytes pulsed with tumor antigens are effective antigen‐presenting cells that can generate specific T cells. Cancer Res 2003; 63: 2836 – 2843.en_US
dc.identifier.citedreferenceCoughlin CM, Vance BA, Grupp SA, et al.: RNA‐transfected CD40‐activated B cells induce functional T‐cell responses against viral and tumor antigen targets: Implications for pediatric immunotherapy. Blood 2004; 103: 2046 – 2054.en_US
dc.identifier.citedreferenceVan den Bosch GA, Ponsaerts P, Nijs G, et al.: Ex vivo induction of viral antigen‐specific CD8 T cell responses using mRNA‐electroporated CD40‐activated B cells. Clin Exp Immunol 2005; 139: 458 – 467.en_US
dc.identifier.citedreferenceChung Y, Kim BS, Kim YJ, et al.: CD1d‐restricted T cells license B cells to generate long‐lasting cytotoxic antitumor immunity in vivo. Cancer Res 2006; 66: 6843 – 6850.en_US
dc.identifier.citedreferenceTamada K, Harada M, Okamoto T, et al.: Specific antitumor activity of tumor‐infiltrating lymphocytes expanded first in a culture with both anti‐CD3 monoclonal antibody and activated B cells and then in a culture with interleukin‐2. Cancer Immunol Immunother 1995; 41: 339 – 347.en_US
dc.identifier.citedreferenceHarada M, Okamoto T, Kurosawa S, et al.: The antitumor activity induced by the in vivo administration of activated B cells bound to anti‐CD3 monoclonal antibody. Cell Immunol 1995; 161: 132 – 137.en_US
dc.identifier.citedreferenceKawakami K, Terabe M, Kawakami M, et al.: Characterization of a novel human tumor antigen interleukin‐13 receptor alpha2 chain. Cancer Res 2006; 66: 4434 – 4442.en_US
dc.identifier.citedreferenceLi Q, Teitz‐Tennenbaum S, Donald EJ, et al.: In vivo sensitized and in vitro activated B cells mediate tumor regression in cancer adoptive immunotherapy. J Immunol 2009; 183: 3195 – 3203.en_US
dc.identifier.citedreferenceLi Q, Lao X, Pan Q, et al.: Adoptive transfer of tumor reactive B cells confers host T‐cell immunity and tumor regression. Clin Cancer Res 2011 17: 4987 – 4995.en_US
dc.identifier.citedreferenceKemp TJ, Moore JM, Griffith TS: Human B cells express functional TRAIL/Apo‐2 ligand after CpG‐containing oligodeoxynucleotide stimulation. J Immunol 2004; 173: 892 – 899.en_US
dc.identifier.citedreferenceLopez DM, Blomberg BB, Padmanabhan RR, et al.: Nuclear disintegration of target cells by killer B lymphocytes from tumor‐bearing mice. FASEB J 1989; 3: 37 – 43.en_US
dc.identifier.citedreferenceLeBien TW, Tedder TF: B lymphocytes: How they develop and function. Blood 2008; 112: 1570 – 1580.en_US
dc.identifier.citedreferenceFagraeus A: The plasma cellular reaction and its relation to the formation of antibodies in vitro. J Immunol 1948; 58: 1 – 13.en_US
dc.identifier.citedreferenceCooper MD, Peterson RD, Good RA: Delineation of the thymic and bursal lymphoid systems in the chicken. Nature 1965; 205: 143 – 146.en_US
dc.identifier.citedreferenceCooper MD, Raymond DA, Peterson RD, et al.: The functions of the thymus system and the bursa system in the chicken. J Exp Med 1966; 123: 75 – 102.en_US
dc.identifier.citedreferenceRon Y, De Baetselier P, Gordon J, et al.: Defective induction of antigen‐reactive proliferating T cells in B cell‐deprived mice. Eur J Immunol 1981; 11: 964 – 968.en_US
dc.identifier.citedreferenceRon Y, Sprent J: T cell priming in vivo: A major role for B cells in presenting antigen to T cells in lymph nodes. J Immunol 1987; 138: 2848 – 2856.en_US
dc.identifier.citedreferenceJaneway CA, Jr., Ron J, Katz ME: The B cell is the initiating antigen‐presenting cell in peripheral lymph nodes. J Immunol 1987; 138: 1051 – 1055.en_US
dc.identifier.citedreferenceLanzavecchia A: Antigen‐specific interaction between T and B cells. Nature 1985; 314: 537 – 539.en_US
dc.identifier.citedreferenceHarris DP, Haynes L, Sayles PC, et al.: Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 2000; 1: 475 – 482.en_US
dc.identifier.citedreferenceHarris DP, Goodrich S, Mohrs K, et al.: Cutting edge: the development of IL‐4‐producing B cells (B effector 2cells) is controlled by IL‐4, IL‐4 receptor alpha, and Th2 cells. J Immunol 2005; 175: 7103 – 7107.en_US
dc.identifier.citedreferenceHarris DP, Goodrich S, Gerth AJ, et al.: Regulation of IFN‐gamma production by B effector 1 cells: Essential roles for T‐bet and the IFN‐gamma receptor. J Immunol 2005; 174: 6781 – 6790.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.