Show simple item record

Antiinflammatory Therapies for Cystic Fibrosis: Past, Present, and Future

dc.contributor.authorPrescott, William A.en_US
dc.contributor.authorJohnson, Cary E.en_US
dc.date.accessioned2012-03-16T16:00:45Z
dc.date.available2012-03-16T16:00:45Z
dc.date.issued2005-04en_US
dc.identifier.citationPrescott, William A.; Johnson, Cary E. (2005). "Antiinflammatory Therapies for Cystic Fibrosis: Past, Present, and Future." Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 25(4). <http://hdl.handle.net/2027.42/90358>en_US
dc.identifier.issn0277-0008en_US
dc.identifier.issn1875-9114en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90358
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherNutritionen_US
dc.subject.otherAntiproteaseen_US
dc.subject.otherCystic Fibrosisen_US
dc.subject.otherInflammationen_US
dc.subject.otherAntiinflammatoryen_US
dc.subject.otherCorticosteroiden_US
dc.subject.otherIbuprofenen_US
dc.subject.otherMacrolideen_US
dc.subject.otherAzithromycinen_US
dc.subject.otherAntioxidanten_US
dc.titleAntiinflammatory Therapies for Cystic Fibrosis: Past, Present, and Futureen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCollege of Pharmacy, University of Michigan, and the Department of Pharmacy Services, University of Michigan Health System, Ann Arbor, Michigan.en_US
dc.contributor.affiliationotherSchool of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York.en_US
dc.identifier.pmid15977917en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90358/1/phco.25.4.555.61025.pdf
dc.identifier.doi10.1592/phco.25.4.555.61025en_US
dc.identifier.sourcePharmacotherapy: The Journal of Human Pharmacology and Drug Therapyen_US
dc.identifier.citedreferenceBenbernou N, Esnault S, Potron G, Guenounou M. Regulatory effects of pentoxifylline on T‐helper cell‐derived cytokine production in human blood cells. J Cardiovasc Pharmacol 1995; 25 ( suppl 2 ): S75 – 9.en_US
dc.identifier.citedreferenceChristophe A, Robberecht E, De Baets F, Franckx H. Increase of long chain omega‐3 fatty acids in the major serum lipid classes of patients with cystic fibrosis. Ann Nutr Metab 1992; 36: 304 – 12.en_US
dc.identifier.citedreferenceHenderson WR Jr, Astley SJ, McCready MM, et al. Oral absorption of omega‐3 fatty acids in patients with cystic fibrosis who have pancreatic insufficiency and in healthy control subjects. J Pediatr 1994; 124: 400 – 8.en_US
dc.identifier.citedreferenceKurlandsky LE, Bennink MR, Webb PM, Ulrich PJ, Baer LJ. The absorption and effect of dietary supplementation with omega‐3 fatty acids on serum leukotriene B 4 in patients with cystic fibrosis. Pediatr Pulmonol 1994; 18: 211 – 17.en_US
dc.identifier.citedreferenceClandinin MT, Zuberbuhler P, Brown NE, Kielo ES, Goh YK. Fatty acid pool size in plasma lipoprotein fractions of cystic fibrosis patients. Am J Clin Nutr 1995; 62: 1268 – 75.en_US
dc.identifier.citedreferenceLawrence R, Sorrell T. Eicosapentaenoic acid in cystic fibrosis: evidence of a pathogenetic role for leukotriene B 4. Lancet 1993; 342: 465 – 9.en_US
dc.identifier.citedreferenceLawrence RH, Sorrell TC. Eicosapentaenoic acid modulates neutrophil leukotriene B 4 receptor expression in cystic fibrosis. Clin Exper Immunol 1994; 98: 12 – 16.en_US
dc.identifier.citedreferenceHenderson WR Jr, Astley SJ, Ramsey BW. Liver function in patients with cystic fibrosis ingesting fish oil. J Pediatr 1994; 125: 504 – 5.en_US
dc.identifier.citedreferenceVogelmeier C, Biedermann T, Maier K, et al. Comparative loss of activity of recombinant secretory leukoprotease inhibitor and α‐1‐protease inhibitor caused by different forms of oxidative stress. Eur Respir J 1997; 10: 2114 – 19.en_US
dc.identifier.citedreferenceGast A, Anderson W, Probst A, et al. Pharmacokinetics and distribution of recombinant secretory leukocyte proteinase inhibitor in rats. Am Rev Respir Dis 1990; 141: 889 – 94.en_US
dc.identifier.citedreferenceMcElvaney NG, Nakamura H, Birrer P, et al. Modulation of airway inflammation in cystic fibrosis: in vivo suppression of interleukin‐8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor. J Clin Invest 1992; 90: 1296 – 301.en_US
dc.identifier.citedreferenceMcElvaney NG, Doujaiji B, Moan MJ, Burnham MR, Wu MC, Crystal RG. Pharmacokinetics of recombinant secretory leukoprotease inhibitor aerosolized to normals and individuals with cystic fibrosis. Am Rev Respir Dis 1993; 148: 1056 – 60.en_US
dc.identifier.citedreferenceGillissen A, Birrer P, McElvaney NG, et al. Recombinant secretory leukoprotease inhibitor augments glutathione levels in lung epithelial lining fluid. J Appl Physiol 1993; 75: 825 – 32.en_US
dc.identifier.citedreferenceSchuster A, Hansen G, Zubrod‐Eichert C, Wahn V. Effects of native and oxidation‐resistant secretory leukoprotease inhibitor on cystic fibrosis sputum: inhibition of neutrophil elastase activity and of sputum‐induced secretion from porcine tracheal submucosal glands. Pediatr Res 1996; 40: 732 – 7.en_US
dc.identifier.citedreferenceMcElvaney NG, Hubbard RC, Birrer P, et al. Aerosol α‐1‐antitrypsin treatment for cystic fibrosis. Lancet 1991; 337: 392 – 4.en_US
dc.identifier.citedreferenceGriese M, von Bredow C, Birrer P. Reduced proteolysis of surfactant protein A and changes of the bronchoalveolar lavage fluid proteome by inhaled α‐1‐protease inhibitor in cystic fibrosis. Electrophoresis 2001; 22: 165 – 71.en_US
dc.identifier.citedreferenceBerger M, Konstan M, Hilliard J. Aerosolized Prolastin (α‐1‐protease inhibitor) in CF [abstr]. Pediatr Pulmonol 1995; 20: 421.en_US
dc.identifier.citedreferenceRoum JH, Buhl R, McElvaney NG, Borok Z, Crystal RG. Systemic deficiency of glutathione in cystic fibrosis. J Appl Physiol 1993; 75: 2419 – 24.en_US
dc.identifier.citedreferenceStolk J, Camps J, Feitsman HIJ, Dijkman JH, Pauwels EKJ. Pulmonary deposition and disappearance of aerosolised secretory leucocyte protease inhibitor. Thorax 1995; 50: 645 – 50.en_US
dc.identifier.citedreferenceSmith RM, Spragg RG. Production and administration to dogs of aerosols of α‐1‐proteinase inhibitor. Am J Med 1988; 84: 48 – 51.en_US
dc.identifier.citedreferenceSmith RM, Traber LD, Traber DL, Spragg RG. Pulmonary deposition and clearance of aerosolized α‐1‐proteinase inhibitor administered to dogs and to sheep. J Clin Invest 1989; 84: 1145 – 54.en_US
dc.identifier.citedreferenceRees DD, Rogers RA, Cooley J, Mandle RJ, Kenney DM, Remold‐O'Donnell E. Recombinant human monocyte/neutrophil elastase inhibitor protects rat lungs against injury from cystic fibrosis airway secretions. Am J Respir Cell Mol Biol 1999; 20: 69 – 78.en_US
dc.identifier.citedreferenceRees DD, Brain JD, Wohl ME, Humes JL, Mumford RA. Inhibition of neutrophil elastase in CF sputum by L‐658,758. J Pharmacol Exper Ther 1997; 283: 1201 – 6.en_US
dc.identifier.citedreferenceVender RL, Burcham DL, Quon CY. DMP 777: a synthetic human neutrophil elastase inhibitor as therapy for cystic fibrosis. Pediatr Pulmonol 1998; 26 ( suppl 17 ): 136 – 7.en_US
dc.identifier.citedreferenceQuon CY, Chan LL, Burcham DL, Vender RL. Pharmacokinetics and pharmacodynamics of DMP 777, an inhibitor of human neutrophil elastase, in adult cystic fibrosis patients [abstr]. Pediatr Pulmonol 2000; S20: 250.en_US
dc.identifier.citedreferenceWilliams JC, Falcone RC, Knee C, et al. Biologic characterization of ICI 200,880 and ICI 200,355, novel inhibitors of human neutrophil elastase. Am Rev Respir Dis 1991; 144: 875 – 83.en_US
dc.identifier.citedreferenceAbrahamson B, Belucci W, Roemer EJ, Ren CL, Simon SR. Inhibition of matrix metalloproteinase‐9 (MMP‐9) and neutrophil elastase (NE) by chemically modified tetracyclines (CMTs) [abstr]. Pediatr Pulmonol 1999; S19: 317.en_US
dc.identifier.citedreferenceChmiel JF, Konstan MW, Knesebeck JE, et al. IL‐10 attenuates excessive inflammation in chronic Pseudomonas infection in mice. Am J Respir Crit Care Med 1999; 160: 2040 – 7.en_US
dc.identifier.citedreferenceKennedy MJ. Inflammation and cystic fibrosis pulmonary disease. Pharmacotherapy 2001; 21: 593 – 603.en_US
dc.identifier.citedreferenceBoucher RC. An overview of the pathogenesis of cystic fibrosis lung disease. Adv Drug Deliv Rev 2002; 54: 1359 – 71.en_US
dc.identifier.citedreferenceKonstan MW, Berger M. Current understanding of the inflammatory process in cystic fibrosis: onset and etiology. Pediatr Pulmonol 1997; 24: 137 – 42.en_US
dc.identifier.citedreferenceKhan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 1995; 151: 1075 – 82.en_US
dc.identifier.citedreferenceArmstrong DS, Grimwood K, Carzino R, Carlin JB, Olinsky A, Phelan PD. Lower respiratory infection and inflammation in infants with newly diagnosed cystic fibrosis. BMJ 1995; 310: 1571 – 2.en_US
dc.identifier.citedreferenceArmstrong DS, Grimwood K, Carlin JB, Carzino R, Olinsky A, Phelan PD. Bronchoalveolar lavage or oropharyngeal cultures to identify lower respiratory pathogens in infants with cystic fibrosis. Pediatr Pulmonol 1996; 21: 267 – 75.en_US
dc.identifier.citedreferenceArmstrong DS, Grimwood K, Carlin JB, et al. Lower airway inflammation in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 1997; 156: 1197 – 204.en_US
dc.identifier.citedreferenceBalough K, McCubbin M, Weinberger M, Smits W, Ahrens R, Fick R. The relationship between infection and inflammation in the early stages of lung disease from cystic fibrosis. Pediatr Pulmonol 1995; 20: 63 – 70.en_US
dc.identifier.citedreferenceBirrer P, McElvaney NG, Rudeberg A, et al. Protease‐antiprotease imbalance in the lungs of children with cystic fibrosis. Am J Respir Crit Care Med 1994; 150: 207 – 13.en_US
dc.identifier.citedreferenceKonstan MW, Hilliard KA, Norvell TM, Berger M. Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med 1994; 150: 448 – 54.en_US
dc.identifier.citedreferenceRosenfeld M, Gibson RL, McNamara S, et al. Early pulmonary infection, inflammation, and clinical outcomes in infants with cystic fibrosis. Pediatr Pulmonol 2001; 32: 356 – 66.en_US
dc.identifier.citedreferenceHamutcu R, Woo MS. Advanced cystic fibrosis lung disease in children. Curr Opin Pulm Med 2001; 7: 448 – 53.en_US
dc.identifier.citedreferenceOermann CM, Sockrider MM, Konstan MW. The use of antiinflammatory medications in cystic fibrosis: trends and physician attitudes. Chest 1999; 115: 1053 – 8.en_US
dc.identifier.citedreferenceVan Der Vliet A, Eiserich JP, Marelich GP, Halliwell B, Cross CE. Oxidative stress in cystic fibrosis: does it occur and does it matter? Adv Pharmacol 1997; 38: 491 – 513.en_US
dc.identifier.citedreferenceWood LG, Fitzgerald DA, Gibson PG, Cooper DM, Collins CE, Garg ML. Oxidative stress in cystic fibrosis: dietary and metabolic factors. J Am Coll Nutr 2001; 20: 157 – 65.en_US
dc.identifier.citedreferenceHomnick DN, Cox JH, DeLoof MJ, Ringer TV. Carotenoid levels in normal children and in children with cystic fibrosis. J Pediatr 1993; 122: 703 – 7.en_US
dc.identifier.citedreferenceHansen G, Schuster A, Zubrod C, Wahn V. α‐1‐Proteinase inhibitor abrogates proteolytic and secretagogue activity of cystic fibrosis sputum. Respiration 1995; 62: 117 – 24.en_US
dc.identifier.citedreferenceAllen ED. Opportunities for the use of aerosolized α‐1‐antitrypsin for the treatment of cystic fibrosis. Chest 1996; 110 ( 6 suppl ): 256S – 60.en_US
dc.identifier.citedreferenceDoring G. Serine proteinase inhibitor therapy in α‐1‐antitrypsin inhibitor deficiency and cystic fibrosis. Pediatr Pulmonol 1999; 28: 363 – 75.en_US
dc.identifier.citedreferenceBonfield TL, Panuska JR, Konstan MW, et al. Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med 1995; 152: 2111 – 18.en_US
dc.identifier.citedreferenceBonfield TL, Konstan MW, Berger M. Altered respiratory epithelial cell cytokine production in cystic fibrosis. J Allergy Clin Immunol 1999; 104: 72 – 8.en_US
dc.identifier.citedreferenceKonstan MW, Walenga RW, Hilliard KA, Hilliard JB. Leukotriene B 4 markedly elevated in the epithelial lining fluid of patients with cystic fibrosis. Am Rev Respir Dis 1993; 148: 896 – 901.en_US
dc.identifier.citedreferenceKonstan MW, Davis PB. Pharmacological approaches for the discovery and development of new anti‐inflammatory agents for the treatment of cystic fibrosis. Adv Drug Deliv Rev 2002; 54: 1409 – 23.en_US
dc.identifier.citedreferenceKonstan MW. Treatment of airway inflammation in cystic fibrosis. Curr Opin Pulm Med 1996; 2: 452 – 6.en_US
dc.identifier.citedreferenceGreally P, Hussain MJ, Vergani D, Price JF. Interleukin‐1‐α, soluble interleukin‐2 receptor, and IgG concentrations in cystic fibrosis treated with prednisolone. Arch Dis Child 1994; 71: 35 – 9.en_US
dc.identifier.citedreferenceAuerbach HS, Williams M, Kirkpatrick JA, Colten HR. Alternate‐day prednisone reduces morbidity and improves pulmonary function in cystic fibrosis. Lancet 1985; 2: 686 – 8.en_US
dc.identifier.citedreferenceEigen H, Rosenstein BJ, FitzSimmons S, Schidlow DV. A multicenter study of alternate‐day prednisone therapy in patients with cystic fibrosis: Cystic fibrosis foundation prednisone trial group. J Pediatr 1995; 126: 515 – 23.en_US
dc.identifier.citedreferenceDonati MA, Haver K, Gerson W, Klein M, McLaughlin FJ, Wohl MEB. Long‐term alternate day prednisone therapy in cystic fibrosis [abstr]. Pediatr Pulmonol 1990; 5 ( suppl ): 277.en_US
dc.identifier.citedreferenceLai HC, FitzSimmons SC, Allen DB, et al. Risk of persistent growth impairment after alternate‐day prednisone treatment in children with cystic fibrosis. N Engl J Med 2000; 342: 851 – 9.en_US
dc.identifier.citedreferenceConway SP, Morton AM, Oldroyd B, et al. Osteoporosis and osteopenia in adults and adolescents with cystic fibrosis: prevalence and associated factors. Thorax 2000; 55: 798 – 804.en_US
dc.identifier.citedreferenceSauty A, Leuenberger PH, Fitting JW. Cushing's syndrome in a patient with cystic fibrosis treated with itraconazole and deflazacort for allergic bronchopulmonary aspergillosis [abstr]. Eur Respir J 1995; 19 ( suppl ): 441S.en_US
dc.identifier.citedreferenceLinthoudt H, Van Raemdonck D, Lerut T, Demedts M, Verleden G. The association of itraconazole and methyl‐prednisolone may give rise to important steroid‐related side effects [letter]. J Heart Lung Transplant 1996; 15: 1165.en_US
dc.identifier.citedreferenceAllen DB, Bielory L, Derendorf H, et al. Inhaled cortico‐steroids: past lessons and future issues. J Allergy Clin Immunol 2003; 112 ( 3 suppl ): S1 – 40.en_US
dc.identifier.citedreferenceSchiotz PO, Jorgensen M, Flensborg EW, et al. Chronic Pseudomonas aeruginosa lung infection in cystic fibrosis: a longitudinal study of immune complex activity and inflammatory response in sputum sol‐phase of cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infections: influence of local steroid treatment. Acta Paediatr Scand 1983; 72: 283 – 7.en_US
dc.identifier.citedreferenceVan Haren EH, Lammers JW, Festen J, Heijerman HG, Groot CA, Van Herwaarden CL. The effects of the inhaled corticosteroid budesonide on lung function and bronchial hyperresponsiveness in adult patients with cystic fibrosis. Respir Med 1995; 89: 209 – 14.en_US
dc.identifier.citedreferenceNikolaizik WH, Schoni MH. Pilot study to assess the effect of inhaled corticosteroids on lung function in patients with cystic fibrosis. J Pediatr 1996; 128: 271 – 4.en_US
dc.identifier.citedreferenceBisgaard H, Pedersen SS, Nielsen KG, et al. Controlled trial of inhaled budesonide in patients with cystic fibrosis and chronic bronchopulmonary Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 1997; 156: 1190 – 6.en_US
dc.identifier.citedreferenceBalfour‐Lynn IM, Klein NJ, Dinwiddie R. Randomised controlled trial of inhaled corticosteroids (fluticasone propionate) in cystic fibrosis. Arch Dis Child 1997; 77: 124 – 30.en_US
dc.identifier.citedreferenceDauletbaev N, Viel K, Behr J, et al. Effects of short‐term inhaled fluticasone on oxidative burst of sputum cells in cystic fibrosis patients. Eur Respir J 1999; 14: 1150 – 5.en_US
dc.identifier.citedreferenceWojtczak HA, Kerby GS, Wagener JS, et al. Beclomethasone diproprionate reduced airway inflammation without adrenal suppression in young children with cystic fibrosis: a pilot study. Pediatr Pulmonol 2001; 32: 293 – 302.en_US
dc.identifier.citedreferenceSchmidt J, Davidson AGF, Seear M, et al. Is the acquisition of pseudomonads in cystic fibrosis patients increased by use of inhaled corticosteroids? Unexpected results from a double blind placebo controlled study. Pediatr Pulmonol 1997; 14 ( suppl ): 293 – 4.en_US
dc.identifier.citedreferenceAllen DB. Inhaled corticosteroid therapy for asthma in preschool children: growth issues. Pediatrics 2002; 109 ( 2 suppl ): 373 – 80.en_US
dc.identifier.citedreferenceMain KM, Skov M, Sillesen IB, et al. Cushing's syndrome due to pharmacological interaction in a cystic fibrosis patient. Acta Paediatr 2002; 91: 1008 – 11.en_US
dc.identifier.citedreferenceSkov M, Main KM, Sillesen IB, Muller J, Koch C, Lanng S. Iatrogenic adrenal insufficiency as a side‐effect of combined treatment of itraconazole and budesonide. Eur Respir J 2002; 20: 127 – 33.en_US
dc.identifier.citedreferenceAutret‐Leca E. A general overview of the use of ibuprofen in paediatrics. Int J Clin Pract 2003; 135 ( suppl ): 9 – 12.en_US
dc.identifier.citedreferenceKonstan MW, Byard PJ, Hoppel CL, Davis PB. Effect of high‐dose ibuprofen in patients with cystic fibrosis. N Engl J Med 1995; 332: 848 – 54.en_US
dc.identifier.citedreferenceNorth American Cystic Fibrosis Foundation. Ibuprofen: information for cystic fibrosis physicians. Bethesda, MD: Cystic Fibrosis Foundation, 1995.en_US
dc.identifier.citedreferenceBrown KA, Collins AJ. Action of nonsteroidal, antiinflammatory drugs on human and rat peripheral leucocyte migration in vitro. Ann Rheum Dis 1977; 36: 239 – 43.en_US
dc.identifier.citedreferenceVenezio FR, DiVincenzo C, Pearlman F, Phair JP. Effects of the newer nonsteroidal anti‐inflammatory agents, ibuprofen, fenoprofen, and sulindac, on neutrophil adherence. J Infect Dis 1985; 152: 690 – 4.en_US
dc.identifier.citedreferenceShimanuki T, Nakamura RM, Dizerega GS. Modulation of leukotaxis by ibuprofen: a quantitative determination in vivo. Inflammation 1985; 9: 285 – 95.en_US
dc.identifier.citedreferenceMaderazo EG, Breaux SP, Woronick CL. Inhibition of human polymorphonuclear leukocyte cell responses by ibuprofen. J Pharm Sci 1984; 73: 1403 – 6.en_US
dc.identifier.citedreferenceFlynn PJ, Becker WK, Vercellotti GM, et al. Ibuprofen inhibits granulocyte responses to inflammatory mediators: a proposed mechanism for reduction of experimental myocardial infarct size. Inflammation 1984; 8: 33 – 44.en_US
dc.identifier.citedreferenceKaplan HB, Edelson HS, Korchak HM, Given WP, Abramson S, Weissmann G. Effects of non‐steroidal anti‐inflammatory agents on human neutrophil functions in vitro and in vivo. Biochem Pharmacol 1984; 33: 371 – 8.en_US
dc.identifier.citedreferenceHiggs GA, Eakins KE, Mugridge KG, Moncada S, Vane JR. The effects of non‐steroid anti‐inflammatory drugs on leukocyte migration in carrageenin‐induced inflammation. Eur J Pharmacol 1980; 66: 81 – 6.en_US
dc.identifier.citedreferenceSordelli DO, Cerquetti MC, El‐Tawil G, Ramwell PW, Hooke AM, Bellanti JA. Ibuprofen modifies the inflammatory response of the murine lung to Pseudomonas aeruginosa. Eur J Respir Dis 1985; 67: 118 – 27.en_US
dc.identifier.citedreferenceRinaldo JE, Dauber JH. Effect of methylprednisolone and of ibuprofen, a nonsteroidal antiinflammatory agent, on bronchoalveolar inflammation following endotoxemia. Circ Shock 1985; 16: 195 – 203.en_US
dc.identifier.citedreferenceRinaldo JE, Pennock B. Effects of ibuprofen on endotoxin‐induced alveolitis: biphasic dose response and dissociation between inflammation and hypoxemia. Am J Med Sci 1986; 291: 29 – 38.en_US
dc.identifier.citedreferenceKonstan MW, Hilliard KA, Davis PB. Effect of ibuprofen on neutrophil (PMN) delivery to mucosal surfaces. Pediatr Pulmonol 1989; 7 ( suppl 4 ): 152 – 3.en_US
dc.identifier.citedreferenceKonstan MW, Vargo KM, Davis PB. Ibuprofen attenuates the inflammatory response to Pseudomonas aeruginosa in a rat model of chronic pulmonary infection: implications for antiinflammatory therapy in cystic fibrosis. Am Rev Respir Dis 1990; 141: 186 – 92.en_US
dc.identifier.citedreferenceKonstan MW, Krenicky JE, Finney MR, et al. Effect of ibuprofen on neutrophil migration in vivo in cystic fibrosis and healthy subjects. J Pharmacol Exp Ther 2003; 306: 1086 – 91.en_US
dc.identifier.citedreferenceKonstan MW, Hoppel CL, Chai BL, Davis PB. Ibuprofen in children with cystic fibrosis: pharmacokinetics and adverse effects. J Pediatr 1991; 118: 956 – 64.en_US
dc.identifier.citedreferenceArranz I, Martin‐Suarez A, Lanao JM, et al. Population pharmacokinetics of high dose ibuprofen in cystic fibrosis. Arch Dis Child 2003; 88: 1128 – 30.en_US
dc.identifier.citedreferenceMurry DJ, Oermann CM, Ou CN, Rognerud C, Seilheimer DK, Sockrider MM. Pharmacokinetics of ibuprofen in patients with cystic fibrosis. Pharmacotherapy 1999; 19: 340 – 5.en_US
dc.identifier.citedreferenceRifai N, Sakamoto M, Law T, Galpchian V, Harris N, Colin AA. Use of a rapid HPLC assay for determination of pharmacokinetic parameters of ibuprofen in patients with cystic fibrosis. Clin Chem 1996; 42: 1812 – 16.en_US
dc.identifier.citedreferenceScott CS, Retsch‐Bogart GZ, Kustra RP, Graham KM, Glasscock BJ, Smith PC. The pharmacokinetics of ibuprofen suspension, chewable tablets, and tablets in children with cystic fibrosis. J Pediatr 1999; 134: 58 – 63.en_US
dc.identifier.citedreferenceBeringer P, Aminimanizani A, Synold T, Scott C. Development of population pharmacokinetic models and optimal sampling times for ibuprofen tablet and suspension formulations in children with cystic fibrosis. Ther Drug Monit 2002; 24: 315 – 21.en_US
dc.identifier.citedreferenceLesko SM, Mitchell AA. An assessment of the safety of pediatric ibuprofen: a practitioner‐based randomized clinical trial. JAMA 1995; 273: 929 – 33.en_US
dc.identifier.citedreferenceRodriguez Garcia LA, Jick H. Risk of upper gastrointestinal bleeding and perforation associated with individual non‐steroidal anti‐inflammatory drugs. Lancet 1994; 343: 769 – 72.en_US
dc.identifier.citedreferenceKonstan MW, FitzSimmons SC. Clinical use of ibuprofen for cystic fibrosis (CF) lung disease: data from the 1996 CF foundation national patient registry [abstr]. Pediatr Pulmonol 1997; 14 ( suppl ): 322.en_US
dc.identifier.citedreferenceBell EA, Grothe R, Zivkovich V, Foote JM, Wellendorf J. Pyloric channel stricture secondary to high‐dose ibuprofen therapy in a patient with cystic fibrosis. Ann Pharmacother 1999; 33: 693 – 6.en_US
dc.identifier.citedreferenceKovesi TA, Swartz R, MacDonald N. Transient renal failure due to simultaneous ibuprofen and aminoglycoside therapy in children with cystic fibrosis. N Engl J Med 1998; 338: 65 – 6.en_US
dc.identifier.citedreferenceScott CS, Retsch‐Bogart GZ, Henry MM. Renal failure and vestibular toxicity in an adolescent with cystic fibrosis receiving gentamicin and standard‐dose ibuprofen. Pediatr Pulmonol 2001; 31: 314 – 16.en_US
dc.identifier.citedreferenceCorey M, Farewell V. Determinants of mortality from cystic fibrosis in Canada, 1970–1989. Am J Epidemiol 1996; 143: 1007 – 17.en_US
dc.identifier.citedreferenceSilverstein FE, Faich G, Goldstein JL, et al. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti‐inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial: celecoxib long‐term arthritis safety study. JAMA 2000; 284: 1247 – 55.en_US
dc.identifier.citedreferenceDay R, Morrison B, Luza A, et al. A randomized trial of the efficacy and tolerability of the COX‐2 inhibitor rofecoxib vs ibuprofen in patients with osteoarthritis. Arch Intern Med 2000; 160: 1781 – 7.en_US
dc.identifier.citedreferenceSikes DH, Agrawal NM, Zhao WW, Kent JD, Recker DP, Verburg KM. Incidence of gastroduodenal ulcers associated with valdecoxib compared with that of ibuprofen and diclofenac in patients with osteoarthritis. Eur J Gastroenterol Hepatol 2002; 14: 1101 – 11.en_US
dc.identifier.citedreferencePfizer Inc. Zithromax (azithromycin) prescribing information. New York; 2003.en_US
dc.identifier.citedreferenceSchoni MH. Macrolide antibiotic therapy in patients with cystic fibrosis. Swiss Med Wkly 2003; 133: 297 – 301.en_US
dc.identifier.citedreferenceHoiby N. Diffuse panbronchiolitis and cystic fibrosis: east meets west. Thorax 1994; 49: 531 – 2.en_US
dc.identifier.citedreferenceKoyama H, Geddes DM. Erythromycin and diffuse panbronchiolitis. Thorax 1997; 52: 915 – 18.en_US
dc.identifier.citedreferenceGaylor AS, Reilly JC. Therapy with macrolides in patients with cystic fibrosis. Pharmacotherapy 2002; 22: 227 – 39.en_US
dc.identifier.citedreferenceCulic O, Erakovic V, Cepelak I, et al. Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol 2002; 450: 277 – 89.en_US
dc.identifier.citedreferenceIanaro A, Ialenti A, Maffia P, et al. Anti‐inflammatory activity of macrolide antibiotics. J Pharmacol Exp Ther 2000; 292: 156 – 63.en_US
dc.identifier.citedreferenceWenisch C, Parschalk B, Zedtwitz‐Liebenstein K, Weihs A, El Menyawi I, Graninger W. Effect of single oral dose of azithromycin, clarithromycin, and roxithromycin on polymorphonuclear leukocyte function assessed ex vivo by flow cytometry. Antimicrob Agents Chemother 1996; 40: 2039 – 42.en_US
dc.identifier.citedreferenceLevert H, Gressier B, Moutard I, et al. Azithromycin impact on neutrophil oxidative metabolism depends on exposure time. Inflammation 1998; 22: 191 – 201.en_US
dc.identifier.citedreferenceKhan AA, Slifer TR, Araujo FG, Remington JS. Effect of clarithromycin and azithromycin on production of cytokines by human monocytes. Int J Antimicrob Agents 1999; 11: 121 – 32.en_US
dc.identifier.citedreferenceBell SC, McCormack JG, Yang IA, et al. Azithromycin reduces TNF‐α release from lipopolysaccharide stimulated mononuclear cells in cystic fibrosis [abstr]. Pediatr Pulmonol 2000; 30 ( suppl 20 ): 261.en_US
dc.identifier.citedreferenceTai S, Sudo E, Sun F, et al. Effect of azithromycin on sputum rheology in cystic fibrosis patients [abstr]. Pediatr Pulmonol 1999; 28 ( suppl 19 ): 264.en_US
dc.identifier.citedreferenceSaiman L, Chen Y, Gabriel PS, Knirsch C. Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. Antimicrob Agents Chemother 2002; 46: 1105 – 7.en_US
dc.identifier.citedreferenceBaumann U, Fischer JJ, Gudowius P, et al. Buccal adherence of Pseudomonas aeruginosa in patients with cystic fibrosis under long‐term therapy with azithromycin. Infection 2001; 29: 7 – 11.en_US
dc.identifier.citedreferenceMizukane R, Hirakata Y, Kaku M, et al. Comparative in vitro exoenzyme‐suppressing activities of azithromycin and other macrolide antibiotics against Pseudomonas aeruginosa. Antimicrob Agents Chemother 1994; 38; 528 – 33.en_US
dc.identifier.citedreferenceMolinari G, Guzman CA, Pesce A, Schito GC. Inhibition of Pseudomonas aeruginosa virulence factors by subinhibitory concentrations of azithromycin and other macrolide antibiotics. J Antimicrob Chemother 1993; 31: 681 – 8.en_US
dc.identifier.citedreferenceKobayashi H. Biofilm disease: its clinical manifestation and therapeutic possibilities of macrolides. Am J Med 1995; 99 ( suppl 6A ): 26S – 30.en_US
dc.identifier.citedreferenceIchimiya T, Takeoka K, Hiramatsu K, Hirai K, Yamasaki T, Nasu M. The influence of azithromycin on the biofilm formation of Pseudomonas aeruginosa in vitro. Chemotherapy 1996; 42: 186 – 91.en_US
dc.identifier.citedreferenceTakeoka K, Ichimiya T, Yamasaki T, Nasu M. The in vitro effect of macrolides on the interaction of human polymorphonuclear leukocytes with Pseudomonas aeruginosa in biofilm. Chemotherapy 1998; 44: 190 – 7.en_US
dc.identifier.citedreferenceTateda K, Ishii Y, Hirakata Y, Matsumoto T, Ohno A, Yamaguchi K. Profiles of outer membrane proteins and lipopolysaccharide of Pseudomonas aeruginosa grown in the presence of sub‐MICs of macrolide antibiotics and their relation to enhanced serum sensitivity. J Antimicrob Chemother 1994; 34: 931 – 42.en_US
dc.identifier.citedreferenceTateda K, Ishii Y, Matsumoto T, et al. Direct evidence for antipseudomonal activity of macrolides: exposure‐dependent bactericidal activity and inhibition of protein synthesis by erythromycin, clarithromycin, and azithromycin. Antimicrob Agents Chemother 1996; 40: 2271 – 5.en_US
dc.identifier.citedreferencePradal U, Delmarco A, Cipolli M, Cazzola G. Chloride transport may be restored by long‐term azithromycin treatment in patients with cystic fibrosis [abstr]. Pediatr Pulmonol 2000; 30 ( suppl 20 ): 280 – 1.en_US
dc.identifier.citedreferenceAltschuler EL. Azithromycin, the multidrug‐resistant protein, and cystic fibrosis [letter]. Lancet 1998; 351: 1286.en_US
dc.identifier.citedreferencePukhalsky AL, Kapranov NI, Kalashnikova EA, et al. Inflammatory markers in cystic fibrosis patients with lung Pseudomonas aeruginosa infection. Mediators Inflamm 1999; 8: 159 – 67.en_US
dc.identifier.citedreferenceOrdonez CL, Stulbarg M, Grundland H, Liu JT, Boushey HA. Effect of clarithromycin on airway obstruction and inflammatory markers in induced sputum in cystic fibrosis: a pilot study. Pediatr Pulmonol 2001; 32: 29 – 37.en_US
dc.identifier.citedreferenceJaffe A, Francis J, Rosenthal M, Bush A. Long‐term azithromycin may improve lung function in children with cystic fibrosis [letter]. Lancet 1998; 351: 420.en_US
dc.identifier.citedreferencePirzada OM, Taylor CJ. Long term macrolide antibiotics improve pulmonary function in cystic fibrosis [abstr]. Pediatr Pulmonol 1999; 28 ( suppl 19 ): 263.en_US
dc.identifier.citedreferenceAnstead MI, Kuhn RJ, Halsey S, Kangra JF. Prolonged beneficial effect of chronic azithromycin therapy on lung function in cystic fibrosis [abstr]. Pediatr Pulmonol 2000; 30 ( suppl 20 ): 244.en_US
dc.identifier.citedreferenceWolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J. Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax 2002; 57: 212 – 16.en_US
dc.identifier.citedreferenceEqui A, Balfour‐Lynn IM, Bush A, Rosenthal M. Long term azithromycin in children with cystic fibrosis: a randomised, placebo‐controlled crossover trial. Lancet 2002; 360: 978 – 84.en_US
dc.identifier.citedreferenceSaiman L, Marshall BC, Mayer‐Hamblett N, et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA 2003; 290: 1749 – 56.en_US
dc.identifier.citedreferenceKahl BC, Duebbers A, Lubritz G, et al. Population dynamics of persistent Staphylococcus aureus isolated from the airways of cystic fibrosis patients during a 6‐year prospective study. J Clin Microbiol 2003; 41: 4424 – 7.en_US
dc.identifier.citedreferencePrunier AL, Malbruny B, Tande D, Picard B, Leclercq R. Clinical isolates of Staphylococcus aureus with ribosomal mutations conferring resistance to macrolides. Antimicrob Agents Chemother 2002; 46: 3054 – 6.en_US
dc.identifier.citedreferencePrunier AL, Malbruny B, Laurans M, Brouard J, Duhamel JF, Leclercq R. High rate of macrolide resistance in Staphylococcus aureus strains from patients with cystic fibrosis reveals high proportions of hypermutable strains. J Infect Dis 2003; 187: 1709 – 16.en_US
dc.identifier.citedreferenceOlivier KN, Weber DJ, Wallace RJ Jr, et al. Nontuberculous mycobacteria in cystic fibrosis study group: nontuberculous mycobacteria. I: multicenter prevalence study in cystic fibrosis. Am J Respir Crit Care Med 2003; 167: 828 – 34.en_US
dc.identifier.citedreferenceOlivier KN, Weber DJ, Lee JH, et al. Nontuberculous mycobacteria in cystic fibrosis study group: nontuberculous mycobacteria. II: nested‐cohort study of impact on cystic fibrosis lung disease. Am J Respir Crit Care Med 2003; 167: 835 – 40.en_US
dc.identifier.citedreferenceWhittier S, Hopfer RL, Knowles MR, Gilligan PH. Improved recovery of mycobacteria from respiratory secretions of patients with cystic fibrosis. J Clin Microbiol 1993; 31: 861 – 4.en_US
dc.identifier.citedreferencePai MP, Graci DM, Amsden GW. Macrolide drug interactions: an update. Ann Pharmacother 2000; 34: 495 – 513.en_US
dc.identifier.citedreferenceRipoll L, Reinert P, Pepin LF, Lagrange PH. Interaction of macrolides with alfa dornase during DNA hydrolysis. J Antimicrob Chemother 1996; 37: 987 – 91.en_US
dc.identifier.citedreferenceSermet‐Gaudelus I, Stoven V, Annereau JP, et al. Interest of colchicine for the treatment of cystic fibrosis patients: preliminary report. Mediators Inflamm 1999; 8: 13 – 15.en_US
dc.identifier.citedreferenceGenetech, Inc. Pulmozyme (dornase alfa) prescribing information. South San Francisco, CA; 2001.en_US
dc.identifier.citedreferenceFuchs HJ, Borowitz DS, Christiansen DH, et al. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis: the Pulmozyme study group. N Engl J Med 1994; 331: 637 – 42.en_US
dc.identifier.citedreferenceMcCoy K, Hamilton S, Johnson C. Effects of 12‐week administration of dornase alfa in patients with advanced cystic fibrosis lung disease: Pulmozyme study group. Chest 1996; 110: 889 – 95.en_US
dc.identifier.citedreferenceQuan JM, Tiddens HA, Sy JP, McKenzie SG, et al. Pulmozyme early intervention trial study group: a two–year randomized, placebo‐controlled trial of dornase alfa in young patients with cystic fibrosis with mild lung function abnormalities. J Pediatr 2001; 139: 813 – 20.en_US
dc.identifier.citedreferenceSuri R, Metcalfe C, Lees B, et al. Comparison of hypertonic saline and alternate‐day or daily recombinant human deoxyribonuclease in children with cystic fibrosis: a randomized trial. Lancet 2001; 358: 1316 – 21.en_US
dc.identifier.citedreferenceHodson ME, McKenzie S, Harms HK, et al. Dornase alfa in the treatment of cystic fibrosis in Europe: a report from the epidemiologic registry of cystic fibrosis. Pediatr Pulmonol 2003; 36: 427 – 32.en_US
dc.identifier.citedreferenceShah PL, Scott SF, Geddes DM, Hodson ME. Two years experience with recombinant human DNase I in the treatment of pulmonary disease in cystic fibrosis. Respir Med 1995; 89: 499 – 502.en_US
dc.identifier.citedreferenceShah PL, Scott SF, Knight RA, Hodson ME. The effects of recombinant human DNase on neutrophil elastase activity and interleukin‐8 levels in the sputum of patients with cystic fibrosis. Eur Respir J 1996; 9: 531 – 4.en_US
dc.identifier.citedreferencePerks B, Shute JK. DNA and actin bind and inhibit interleukin‐8 function in cystic fibrosis sputa: in vitro effects of mucolytics. Am J Respir Crit Care Med 2000; 162: 1767 – 72.en_US
dc.identifier.citedreferencePaul K, Rietschel E, Ballmann M, et al. Effect of treatment with dornase alfa on airway inflammation in patients with cystic fibrosis. Am J Respir Crit Care Med 2004; 169: 719 – 25.en_US
dc.identifier.citedreferenceCronstein BN. The mechanism of action of methotrexate. Rheum Dis Clin North Am 1997; 23: 739 – 55.en_US
dc.identifier.citedreferenceBallmann M, Junge S, von der Hardt H. Low‐dose methotrexate for advanced pulmonary disease in patients with cystic fibrosis. Respir Med 2003; 97: 498 – 500.en_US
dc.identifier.citedreferenceMerck & Co, Inc. Singulair (montelukast) prescribing information. Whitehouse Station, NJ; 2003.en_US
dc.identifier.citedreferenceMorice AH, Kastelik JA, Aziz I. Montelukast sodium in cystic fibrosis. Thorax 2001; 56: 244 – 5.en_US
dc.identifier.citedreferenceSpencer DA, Sampson AP, Green CP, Costello JF, Piper PJ, Price JF. Sputum cysteinyl‐leukotriene levels correlate with the severity of pulmonary disease in children with cystic fibrosis. Pediatr Pulmonol 1992; 12: 90 – 4.en_US
dc.identifier.citedreferenceSchmitt‐Grohe S, Eickmeier O, Schubert R, Bez C, Zielen S. Anti‐inflammatory effects of montelukast in mild cystic fibrosis. Ann Allergy Asthma Immunol 2002; 89: 599 – 605.en_US
dc.identifier.citedreferenceGraff GR, Weber A, Wessler‐Starman D, Smith AL. Montelukast pharmacokinetics in cystic fibrosis. J Pediatr 2003; 142: 53 – 6.en_US
dc.identifier.citedreferenceTorphy TJ, Undem BJ. Phosphodiesterase inhibitors: new opportunities for the treatment of asthma. Thorax 1991; 46: 512 – 23.en_US
dc.identifier.citedreferenceSullivan GW, Carper HT, Novick WJ Jr, Mandell GL. Inhibition of the inflammatory action of interleukin‐1 and tumor necrosis factor (α) on neutrophil function by pentoxifylline. Infect Immun 1988; 56: 1722 – 9.en_US
dc.identifier.citedreferenceDoherty GM, Jensen JC, Alexander HR, Buresh CM, Norton JA. Pentoxifylline suppression of tumor necrosis factor gene transcription. Surgery 1991; 110: 192 – 8.en_US
dc.identifier.citedreferenceNeuner P, Klosner G, Schauer E, et al. Pentoxifylline in vivo down‐regulates the release of IL‐1‐β, IL‐6, IL‐8 and tumour necrosis factor‐α by human peripheral blood mononuclear cells. Immunology 1994; 83: 262 – 7.en_US
dc.identifier.citedreferenceBienvenu J, Doche C, Gutowski MC, Lenoble M, Lepape A, Perdrix JP. Production of proinflammatory cytokines and cytokines involved in the TH1/TH2 balance is modulated by pentoxifylline. J Cardiovasc Pharmacol 1995; 25 ( suppl 2 ): S80 – 4.en_US
dc.identifier.citedreferenceStaudinger T, Presterl E, Graninger W, et al. Influence of pentoxifylline on cytokine levels and inflammatory parameters in septic shock. Intensive Care Med 1996; 22: 888 – 93.en_US
dc.identifier.citedreferenceD'Hellencourt CL, Diaw L, Cornillet P, Guenounou M. Differential regulation of TNF‐α, IL‐1‐β, IL‐6, IL‐8, TNF‐β, and IL‐10 by pentoxifylline. Int J Immunopharmacol 1996; 18: 739 – 48.en_US
dc.identifier.citedreferenceMoller DR, Wysocka M, Greenlee BM, et al. Inhibition of human interleukin‐12 production by pentoxifylline. Immunology 1997; 91: 197 – 203.en_US
dc.identifier.citedreferenceMarques LJ, Zheng L, Poulakis N, Guzman J, Costabel U. Pentoxifylline inhibits TNF‐α production from human alveolar macrophages. Am J Respir Crit Care Med 1999; 159: 508 – 11.en_US
dc.identifier.citedreferencePoulakis N, Androutsos G, Kazi D, et al. The differential effect of pentoxifylline on cytokine production by alveolar macrophages and its clinical implications. Respir Med 1999; 93: 52 – 7.en_US
dc.identifier.citedreferenceTong Z, Chen B, Dai H, Bauer PC, Guzman J, Costabel U. Extrinsic allergic alveolitis: inhibitory effects of pentoxifylline on cytokine production by alveolar macrophages. Ann Allergy Asthma Immunol 2004; 92: 234 – 9.en_US
dc.identifier.citedreferenceBoldt J, Brosch C, Lehmann A, Haisch G, Lang J, Isgro F. Prophylactic use of pentoxifylline on inflammation in elderly cardiac surgery patients. Ann Thorac Surg 2001; 71: 1524 – 9.en_US
dc.identifier.citedreferenceMcDonald RJ. Pentoxifylline reduces injury to isolated lungs perfused with human neutrophils. Am Rev Resp Dis 1991; 144: 1347 – 50.en_US
dc.identifier.citedreferenceCheung AT, Moss RB, Leong AB, Novick WJ Jr. Chronic Pseudomonas aeruginosa endobronchitis in rhesus monkeys: I: effect of pentoxifylline on neutrophil influx. J Med Primatol 1992; 21: 357 – 62.en_US
dc.identifier.citedreferenceSeiffge D, Bissinger T, Kremer E, Laux V, Schleyerbach R. Inhibitory effects of pentoxifylline on LPS‐induced leukocyte adhesion and macromolecular extravasation in the microcirculation. Inflam Res 1995; 44: 281 – 6.en_US
dc.identifier.citedreferenceEhrhart I, McCloud L, Creamer KM, Ocasio H. Pentoxifylline markedly reduces pulmonary neutrophil sequestration [abstr]. Chest 1999; 116 ( 1 suppl ): 34S.en_US
dc.identifier.citedreferenceRolla G, Bucca C, Brussino L, Dutto L, Colagrande P, Polizzi S. Pentoxifylline attenuates LPS‐induced bronchial hyperresponsiveness but not the increase in exhaled nitric oxide. Clin Exp Allergy 1997; 27: 96 – 103.en_US
dc.identifier.citedreferenceAronoff SC, Quinn FJ Jr, Carpenter LS, Novick WJ Jr. Effects of pentoxifylline on sputum neutrophil elastase and pulmonary function in patients with cystic fibrosis: preliminary observations. J Pediatr 1994; 125: 992 – 7.en_US
dc.identifier.citedreferenceBenabdeslam H, Abidi H, Garcia I, Bellon G, Gilly R, Revol A. Lipid peroxidation and antioxidant defenses in cystic fibrosis patients. Clin Chem Lab Med 1999; 37: 511 – 16.en_US
dc.identifier.citedreferenceWinklhofer‐Roob BM, Puhl H, Khoschsorur G, van Hof MA, Esterbauer H, Shmerling DH. Enhanced resistance to oxidation of low density lipoproteins and decreased lipid peroxide formation during β‐carotene supplementation in cystic fibrosis. Free Radic Biol Med 1995; 18: 849 – 59.en_US
dc.identifier.citedreferenceWinklhofer‐Roob BM, van Hof MA, Shmerling DH. Response to oral β‐carotene supplementation in patients with cystic fibrosis: a 16‐month follow‐up study. Acta Paediatr 1995; 84: 1132 – 6.en_US
dc.identifier.citedreferenceLepage G, Champagne J, Ronco N, et al. Supplementation with carotenoids corrects increased lipid peroxidation in children with cystic fibrosis. Am J Clin Nutr 1996; 64: 87 – 93.en_US
dc.identifier.citedreferenceWinklhofer‐Roob BM, Schlegel‐Haueter SE, Khoschsorur G, van Hof MA, Suter S, Shmerling DH. Neutrophil elastase/α‐1‐proteinase inhibitor complex levels decrease in plasma of cystic fibrosis patients during long‐term oral β‐carotene supplementation. Pediatr Res 1996; 40: 130 – 4.en_US
dc.identifier.citedreferenceRust P, Eichler I, Renner S, Elmadfa I. Effects of long term oral β‐carotene supplementation on lipid peroxidation in patients with cystic fibrosis. Int J Vitam Nutr Res 1998; 68: 83 – 7.en_US
dc.identifier.citedreferenceRust P, Eichler I, Renner S, Elmadfa I. Long‐term oral β‐carotene supplementation in patients with cystic fibrosis: effects on antioxidative status and pulmonary function. Ann Nutr Metab 2000; 44: 30 – 7.en_US
dc.identifier.citedreferenceRenner S, Rath R, Rust P, et al. Effects of β‐carotene supplementation for six months on clinical and laboratory parameters in patients with cystic fibrosis. Thorax 2001; 56: 48 – 52.en_US
dc.identifier.citedreferenceCobanoglu N, Ozcelik U, Gocmen A, Kiper N, Dogru D. Antioxidant effect of β‐carotene in cystic fibrosis and bronchiectasis: clinical and laboratory parameters of a pilot study. Acta Paediatr 2002; 91: 793 – 8.en_US
dc.identifier.citedreferenceWood LG, Fitzgerald DA, Lee AK, Garg ML. Improved antioxidant and fatty acid status of patients with cystic fibrosis after antioxidant supplementation is linked to improved lung function. Am J Clin Nutr 2003; 77: 150 – 9.en_US
dc.identifier.citedreferenceBrown RK, Wyatt H, Price JF, Kelly FJ. Pulmonary dysfunction in cystic fibrosis is associated with oxidative stress. Eur Respir J 1996; 9: 334 – 9.en_US
dc.identifier.citedreferenceRoulet M, Frascarolo P, Rappaz I, Pilet M. Essential fatty acid deficiency in well nourished young cystic fibrosis patients. Eur J Pediatr 1997; 156: 952 – 6.en_US
dc.identifier.citedreferenceFreedman SD, Shea JC, Blanco PG, Alvarez JG. Fatty acids in cystic fibrosis. Curr Opin Pulm Med 2000; 6: 530 – 2.en_US
dc.identifier.citedreferenceStrandvik B, Gronowitz E, Enlund F, Martinsson T, Wahlstrom J. Essential fatty acid deficiency in relation to genotype in patients with cystic fibrosis. J Pediatr 2001; 139: 650 – 5.en_US
dc.identifier.citedreferenceDe Vizia B, Raia V, Spano C, Pavlidis C, Coruzzo A, Alessio M. Effect of an 8‐month treatment with omega‐3 fatty acids (eicosapentaenoic and docosahexaenoic) in patients with cystic fibrosis. J Parenter Enteral Nutr 2003; 27: 52 – 7.en_US
dc.identifier.citedreferenceGibson RA, Teubner JK, Haines K, Cooper DM, Davidson GP. Relationships between pulmonary function and plasma fatty acid levels in cystic fibrosis patients. J Pediatr Gastroenterol Nutr 1986; 5: 408 – 15.en_US
dc.identifier.citedreferenceKusoffsky E, Strandvik B, Troell S. Prospective study of fatty acid supplementation over 3 years in patients with cystic fibrosis. J Pediatr Gastroenterol Nutr 1983; 2: 434 – 8.en_US
dc.identifier.citedreferenceKatz DP, Manner T, Furst P, Askanazi J. The use of an intravenous fish oil emulsion enriched with omega‐3 fatty acids in patients with cystic fibrosis. Nutrition 1996; 12: 334 – 9.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.