Show simple item record

On a heuristic point of view concerning the expression of numerous genes during the cell cycle

dc.contributor.authorCooper, Stephenen_US
dc.date.accessioned2012-03-16T16:00:46Z
dc.date.available2013-03-04T15:29:55Zen_US
dc.date.issued2012-01en_US
dc.identifier.citationCooper, Stephen (2012). "On a heuristic point of view concerning the expression of numerous genes during the cell cycle." IUBMB Life 64(1): 10-17. <http://hdl.handle.net/2027.42/90359>en_US
dc.identifier.issn1521-6543en_US
dc.identifier.issn1521-6551en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90359
dc.description.abstractThe current model of the eukaryotic cell cycle proposes that numerous genes are expressed at different times during the cell cycle. The existence of myriad control points for gene expression leads to theoretical and logical problems for cell cycle control. Each expressed gene requires a control element to appear in a cell‐cycle specific manner; this control element requires another control element and so on, ad infinitum . There are also experimental problems with the current model based on ineffective synchronization methods and problems with microarray measurements of mRNA. Equally important, the efficacy of mRNA variation in affecting changes in protein content is negligible. An alternative view of the cell cycle proposes cycle‐independent, invariant accumulation of mRNA during the cell cycle with decreases of specific proteins occurring only during the mitotic period of the cell cycle. © 2011 IUBMB IUBMB Life, 2011.en_US
dc.publisherWiley Subscription Services, Inc., a Wiley companyen_US
dc.subject.otherCycle‐Specificen_US
dc.subject.otherGene Expressionen_US
dc.subject.otherCell Cycleen_US
dc.subject.otherMicroarraysen_US
dc.subject.otherCyclinsen_US
dc.subject.otherG1 Phaseen_US
dc.subject.otherSynchronizationen_US
dc.titleOn a heuristic point of view concerning the expression of numerous genes during the cell cycleen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109‐0520en_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MIen_US
dc.identifier.pmid22095856en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90359/1/571_ftp.pdf
dc.identifier.doi10.1002/iub.571en_US
dc.identifier.sourceIUBMB Lifeen_US
dc.identifier.citedreferenceCooper, S. ( 1997 ) G1 and S phase gene expression cannot be analyzed in mammalian cells synchronized by inhibition. Microb. Comp. Genomics 2, 269 – 273.en_US
dc.identifier.citedreferenceCooper, S. ( 2004 ) Is whole‐culture synchronization biology's “Perpetual Motion Machine?” Trends Biotechnol. 26, 266 – 269.en_US
dc.identifier.citedreferenceCooper, S. ( 2005 ) Reanalysis of the protocol for in vitro synchronization of mammalian astrocytic cultures by serum deprivation. Brain Res. Brain Res. Protoc. 15, 115 – 118.en_US
dc.identifier.citedreferenceCooper, S. ( 2005 ) The continuum model of the eukaryotic cell cycle: application to G1‐phase control, Rb phosphorylation, microarray analysis of gene expression, and cell synchronization. Clin. Oncol. 26, 205 – 206.en_US
dc.identifier.citedreferenceCooper, S. and Gonzalez‐Hernandez, M. ( 2009 ) Experimental reconsideration of the utility of serum starvation as a method for synchronizing mammalian cells. Cell Biol. Int. 33, 71 – 77.en_US
dc.identifier.citedreferenceCooper, S. ( 1998 ) Mammalian cells are not synchronized in G1‐phase by starvation or inhibition: considerations of the fundamental concept of G1‐phase synchronization. Cell Prolif. 31, 9 – 16.en_US
dc.identifier.citedreferenceCooper, S., Chen, K. Z., and Ravi, S. ( 2008 ) Thymidine block does not synchronize L1210 mouse leukaemic cells: implications for cell cycle control, cell cycle analysis and whole‐culture synchronization. Cell Prolif. 41, 156 – 167.en_US
dc.identifier.citedreferenceCooper, S., Iyer, G., Tarquini, M., and Bissett, P. ( 2006 ) Nocodazole does not synchronize cells: implications for cell‐cycle control and whole‐culture synchronization. Cell Tissue Res. 324, 237 – 242.en_US
dc.identifier.citedreferenceCooper, S. ( 1988 ) The continuum model and C‐Myc synthesis during the division cycle. J. Theor. Biol. 135, 393 – 400.en_US
dc.identifier.citedreferenceCooper, S. ( 2004 ) Rejoinder: whole‐culture synchronization cannot, and does not, synchronize cells. Trends Biotechnol. 22, 274 – 276.en_US
dc.identifier.citedreferenceCooper, S. ( 2003 ) Rethinking synchronization of mammalian cells for cell‐cycle analysis. Cell. Mol. Life Sci. 6, 1099 – 1106.en_US
dc.identifier.citedreferenceCooper, S. and Shedden, K. ( 2003 ) Microarray analysis of gene expression during the cell cycle. Cell. Chromosome 2, 1 – 12.en_US
dc.identifier.citedreferenceCooper, S. and Shedden, K. ( 2007 ) Microarrays and the relationship of mRNA variation to protein variation during the cell cycle. J. Theor. Biol. 249, 574 – 581.en_US
dc.identifier.citedreferenceShedden, K. and Cooper, S. ( 2002 ) Analysis of cell‐cycle‐specific gene expression in human cells as determined by microarrays and double‐thymidine block synchronization. Proc. Natl. Acad. Sci. USA 99, 4379 – 4384.en_US
dc.identifier.citedreferenceYang, Y. L., Suen, J., Brynildsen, M. P., Galbraith, S. J., and Liao, J. C. ( 2005 ) Inferring yeast cell cycle regulators and interactions using transcription factor activities. BMC Genomics 6, 90.en_US
dc.identifier.citedreferenceEward, K. L., Van Ert, M. N., Thornton, M., and Helmstetter, C. E. ( 2004 ) Cyclin mRNA stability does not vary during the cell cycle. Cell Cycle 3, 1057 – 1061.en_US
dc.identifier.citedreferenceCooper, S. ( 1998 ) Length extension in growing yeast: is growth exponential?—yes. Microbiology 144, 263 – 265.en_US
dc.identifier.citedreferenceCooper, S. ( 2004 ) Control and maintenance of mammalian cell size. BMC Cell. Biol. 5, 35.en_US
dc.identifier.citedreferenceCooper, S. ( 1998 ) On the proposal of a G0 phase and the restriction point. FASEB J. 12, 367 – 373.en_US
dc.identifier.citedreferenceCooper, S., Yu, C., and Shayman, J. A. ( 1999 ) Phosphorylation‐dephosphorylation of retinoblastoma protein not necessary for passage through the mammalian cell division cycle. IUBMB Life 48, 225 – 230.en_US
dc.identifier.citedreferenceCooper, S. and Shayman, J. A. ( 2001 ) Revisiting retinoblastoma protein phosphorylation during the mammalian cell cycle. Cell. Mol. Life Sci. 58, 580 – 595.en_US
dc.identifier.citedreferenceIsaacson, W. ( 2007 ) Einstein: His Life and Universe. Simon and Schuster, New York, NY.en_US
dc.identifier.citedreferenceZhou, J. Y., Ma, W. L., Liang, S., Zeng, Y., Shi, R., et al. ( 2009 ) Analysis of microrna expression profiles during the cell cycle in synchronized hela cells. BMB Rep. 42, 593 – 598.en_US
dc.identifier.citedreferenceCrick, F. H. C. ( 1963 ) The recent excitement in the coding problem. Prog. Nucleic Acid Res. 1, 163 – 217.en_US
dc.identifier.citedreferenceBreeden, L. L. ( 2003 ) Periodic transcription: a cycle within a cycle. Curr. Biol. 13, R31 – R38.en_US
dc.identifier.citedreferenceCho, R. J., Campbell, M. J., Winzeler, E. A., Steinmetz, L., Conway, A., et al. ( 1998 ) A genome‐wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65 – 73.en_US
dc.identifier.citedreferenceSpellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., et al. ( 1998 ) Comprehensive identification of cell cycle‐regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273 – 3297.en_US
dc.identifier.citedreferenceCho, R. J., Huang, M., Campbell, M. J., Dong, H., Steinmetz, L., et al. ( 2001 ) Transcriptional regulation and function during the human cell cycle. Nat. Genet. 27, 48 – 54.en_US
dc.identifier.citedreferenceWhitfield, M., Sherlock, G., Saldanha, A., Murray, J. I., Ball, C. A., et al. ( 2002 ) Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977 – 2000.en_US
dc.identifier.citedreferenceVan Der Meijden, C. M., Lapointe, D. S., Luong, M. X., Peric‐Hupkes, D., Cho, B., et al. ( 2002 ) Gene profiling of cell cycle progression through S‐phase reveals sequential expression of genes required for DNA replication and nucleosome assembly. Cancer Res. 62, 3233 – 3243.en_US
dc.identifier.citedreferenceBreyne, P., Dreesen, R., Vandepoele, K., De Veylder, L., Van Breusegem, F., et al. ( 2002 ) Transcriptome analysis during cell division in plants. Proc. Natl. Acad. Sci. USA 99, 14825 – 14830.en_US
dc.identifier.citedreferenceRustici, G., Mata, J., Kivinen, K., Lio, P., Penkett, C. J., et al. ( 2004 ) Periodic gene expression program of the fission yeast cell cycle. Nat. Genet. 36, 809 – 817.en_US
dc.identifier.citedreferencePeng, X., Karuturi, R. K., Miller, L. D., Lin, K., Jia, Y., et al. ( 2005 ) Identification of cell cycle‐regulated genes in fission yeast. Mol. Biol. Cell 16, 1026 – 1042.en_US
dc.identifier.citedreferenceMarguerat, S., Jensen, T. S., De Lichtenberg, U., Wilhelm, B. T., Jensen, L. J., et al. ( 2006 ) The more the merrier: comparative analysis of microarray studies on cell cycle‐regulated genes in fission yeast. Yeast 23, 261 – 277.en_US
dc.identifier.citedreferenceOliva, A., Rosebrock, A., Ferrezuelo, F., Pyne, S., Chen, H., et al. ( 2005 ) The cell cycle‐regulated genes of schizosaccharomyces pombe. Plos Biol 3, E225.en_US
dc.identifier.citedreferenceCote, P., Hogues, H., and Whiteway, M. ( 2009 ) Transcriptional analysis of the candida albicans cell cycle. Mol. Biol. Cell 20, 3363 – 3373.en_US
dc.identifier.citedreferenceLaub, M. T., Mcadams, H. H., Feldblyum, T., Fraser, C. M., and Shapiro, L. ( 2000 ) Global analysis of the genetic network controlling a bacterial cell cycle. Science 290, 2144 – 2148.en_US
dc.identifier.citedreferenceHolter, N. S., Mitra, M., Maritan, A., Cieplak, M., Banavar, J. R., et al. ( 2000 ) Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc. Natl. Acad. Sci. USA 97, 8409 – 8414.en_US
dc.identifier.citedreferenceCooper, S., Paulsen, M., Ljungman, M., Vu‐Phan, D., Kim, D., et al. ( 2007 ) Membrane‐elution analysis of content of cyclins A, B1, and E during the unperturbed mammalian cell cycle. BMC Cell Division 2, 28.en_US
dc.identifier.citedreferenceDarzynkiewicz, Z., Gong, J., Juan, G., Ardelt, B., and Traganos, F. ( 1996 ) Cytometry of cyclin proteins. Cytometry 25, 1 – 13.en_US
dc.identifier.citedreferenceTakita, M., Furuya, T., Sugita, T., Kawauchi, S., Oga, A., et al. ( 2003 ) An analysis of changes in the expression of cyclins A and B1 by the cell array system during the cell cycle: comparison between cell synchronization methods. Cytometry A 55, 24 – 29.en_US
dc.identifier.citedreferenceSherwood, S. W., Rush, D. F., Kung, A. L., and Schimke, R. T. ( 1994 ) Cyclin B1 expression in hela S3 cells studied by flow cytometry. Exp. Cell Res. 211, 275 – 281.en_US
dc.identifier.citedreferenceOhtsubo, M., Theodoras, A. M., Schumacher, J., Roberts, J. M., and Pagano, M. ( 1995 ) Human cyclin E, a nuclear protein essential for the G1‐To‐S phase transition. Mol. Cell. Biol. 15, 2612 – 2624.en_US
dc.identifier.citedreferencePines, J. ( 2006 ) Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol. 16, 55 – 63.en_US
dc.identifier.citedreferenceCooper, S. and Shedden, K. ( 2005 ) Analysis of the use of microarrays to measure mRNA variation during the eukaryotic cell cycle in order to identify proteins proposed to be expressed in a cell‐cycle‐specific manner. Theor. Biol. Mol. Modeling 30, 2920 – 2929.en_US
dc.identifier.citedreferenceCooper, S., Shedden, K., and Vu‐Phan, D. ( 2009 ) Invariant mRNA and mitotic protein breakdown solves the russian doll problem of the cell cycle. Cell Biol. Int. 33, 10 – 18.en_US
dc.identifier.citedreferenceCooper, S. ( 2000 ) The continuum model and G1‐control of the mammalian cell cycle. Prog. Cell Cycle Res. 4, 27 – 39.en_US
dc.identifier.citedreferenceCooper, S. ( 1981 ) The continuum model: application to G1‐ARREST and G(O). In Cell Growth ( Nicolini, C., Ed.). pp. 315 – 336, Plenum Press, New York.en_US
dc.identifier.citedreferenceShedden, K. and Cooper, S. ( 2002 ) Analysis of cell‐cycle‐specific gene expression in saccharomyces cerevisiae as determined by microarrays and multiple synchronization methods. Nucleic Acids Res. 30, 2920 – 2929.en_US
dc.identifier.citedreferenceCooper, S. ( 2003 ) Reappraisal of serum starvation, the restriction point, G0, and G1‐phase arrest points. FASEB J. 17, 333 – 340.en_US
dc.identifier.citedreferenceCooper, S. ( 2002 ) Reappraisal of G1‐phase arrest and synchronization by lovastatin. Cell Biol. Int. 26, 715 – 727.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.