Show simple item record

Immunology in clinic review series; focus on autoinflammatory diseases: role of inflammasomes in autoinflammatory syndromes

dc.contributor.authorOzkurede, V. U.en_US
dc.contributor.authorFranchi, Luigien_US
dc.date.accessioned2012-03-16T16:00:55Z
dc.date.available2013-05-01T17:24:43Zen_US
dc.date.issued2012-03en_US
dc.identifier.citationOzkurede, V. U.; Franchi, L. (2012). "Immunology in clinic review series; focus on autoinflammatory diseases: role of inflammasomes in autoinflammatory syndromes." Clinical & Experimental Immunology 167(3). <http://hdl.handle.net/2027.42/90366>en_US
dc.identifier.issn0009-9104en_US
dc.identifier.issn1365-2249en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90366
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherInnate Immunityen_US
dc.subject.otherIL‐1βen_US
dc.subject.otherInflammasomeen_US
dc.subject.otherInflammationen_US
dc.titleImmunology in clinic review series; focus on autoinflammatory diseases: role of inflammasomes in autoinflammatory syndromesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USAen_US
dc.identifier.pmid22288581en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90366/1/j.1365-2249.2011.04535.x.pdf
dc.identifier.doi10.1111/j.1365-2249.2011.04535.xen_US
dc.identifier.sourceClinical & Experimental Immunologyen_US
dc.identifier.citedreferenceZhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin‐interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010; 11: 136 – 40.en_US
dc.identifier.citedreferencevan de Veerdonk FL, Smeekens SP, Joosten LA et al. Reactive oxygen species‐independent activation of the IL‐1beta inflammasome in cells from patients with chronic granulomatous disease. Proc Natl Acad Sci USA 2010; 107: 3030 – 3.en_US
dc.identifier.citedreferenceFeldmann J, Prieur AM, Quartier P et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 2002; 71: 198 – 203.en_US
dc.identifier.citedreferenceHoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin‐like protein causes familial cold autoinflammatory syndrome and Muckle‐Wells syndrome. Nat Genet 2001; 29: 301 – 5.en_US
dc.identifier.citedreferenceAgostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL‐1beta‐processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity 2004; 20: 319 – 25.en_US
dc.identifier.citedreferenceDowds TA, Masumoto J, Zhu L, Inohara N, Nunez G. Cryopyrin‐induced interleukin 1beta secretion in monocytic cells: enhanced activity of disease‐associated mutants and requirement for ASC. J Biol Chem 2004; 279: 21924 – 8.en_US
dc.identifier.citedreferenceDuncan JA, Bergstralh DT, Wang Y et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci USA 2007; 104: 8041 – 6.en_US
dc.identifier.citedreferenceBrydges SD, Mueller JL, McGeough MD et al. Inflammasome‐mediated disease animal models reveal roles for innate but not adaptive immunity. Immunity 2009; 30: 875 – 87.en_US
dc.identifier.citedreferenceMeng G, Zhang F, Fuss I, Kitani A, Strober W. A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell‐dominant immune responses. Immunity 2009; 30: 860 – 74.en_US
dc.identifier.citedreferenceHoffman HM, Throne ML, Amar NJ et al. Efficacy and safety of rilonacept (interleukin‐1 Trap) in patients with cryopyrin‐associated periodic syndromes: results from two sequential placebo‐controlled studies. Arthritis Rheum 2008; 58: 2443 – 52.en_US
dc.identifier.citedreferenceLachmann HJ, Kone‐Paut I, Kuemmerle‐Deschner JB et al. Use of canakinumab in the cryopyrin‐associated periodic syndrome. N Engl J Med 2009; 360: 2416 – 25.en_US
dc.identifier.citedreferenceDowds TA, Masumoto J, Chen FF, Ogura Y, Inohara N, Nunez G. Regulation of cryopyrin/Pypaf1 signaling by pyrin, the familial Mediterranean fever gene product. Biochem Biophys Res Commun 2003; 302: 575 – 80.en_US
dc.identifier.citedreferencePapin S, Cuenin S, Agostini L et al. The SPRY domain of pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL‐1beta processing. Cell Death Differ 2007; 14: 1457 – 66.en_US
dc.identifier.citedreferenceChae JJ, Wood G, Masters SL et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase‐1 to modulate IL‐1beta production. Proc Natl Acad Sci USA 2006; 103: 9982 – 7.en_US
dc.identifier.citedreferenceChae JJ, Komarow HD, Cheng J et al. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 2003; 11: 591 – 604.en_US
dc.identifier.citedreferenceYu JW, Fernandes‐Alnemri T, Datta P et al. Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol Cell 2007; 28: 214 – 27.en_US
dc.identifier.citedreferenceSeshadri S, Duncan MD, Hart JM, Gavrilin MA, Wewers MD. Pyrin levels in human monocytes and monocyte‐derived macrophages regulate IL‐1beta processing and release. J Immunol 2007; 179: 1274 – 81.en_US
dc.identifier.citedreferenceGavrilin MA, Mitra S, Seshadri S et al. Pyrin critical to macrophage IL‐1{beta} response to Francisella challenge. J Immunol 2009; 182: 7982 – 9.en_US
dc.identifier.citedreferenceChae JJ, Cho YH, Lee GS et al. Gain‐of‐function pyrin mutations induce NLRP3 protein‐independent interleukin‐1beta activation and severe autoinflammation in mice. Immunity 2011; 34: 755 – 68.en_US
dc.identifier.citedreferenceDinarello CA, Wolff SM, Goldfinger SE, Dale DC, Alling DW. Colchicine therapy for familial Mediterranean fever. A double‐blind trial. N Engl J Med 1974; 291: 934 – 7.en_US
dc.identifier.citedreferenceHennig S, Bayegan K, Uffmann M, Thalhammer F, Winkler S. Pneumonia in a patient with familial Mediterranean fever successfully treated with anakinra‐case report and review. Rheumatol Int 2010; doi: 10.1007/s00296‐010‐1429‐y.en_US
dc.identifier.citedreferenceMasters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol 2009; 27: 621 – 68.en_US
dc.identifier.citedreferenceHoffman HM, Simon A. Recurrent febrile syndromes: what a rheumatologist needs to know. Nat Rev Rheumatol 2009; 5: 249 – 56.en_US
dc.identifier.citedreferenceKastner DL, Aksentijevich I, Goldbach‐Mansky R. Autoinflammatory disease reloaded: a clinical perspective. Cell 2010; 140: 784 – 90.en_US
dc.identifier.citedreferenceGoldbach‐Mansky R. Immunology in clinic review series; focus on autoinflammatory diseases: update on monogenic autoinflammatory diseases: the role of interleukin (IL)‐1 and an emerging role for cytokines beyond IL‐1. Clin Exp Immun 2012; 167: 391 – 404.en_US
dc.identifier.citedreferenceDinarello CA. Biologic basis for interleukin‐1 in disease. Blood 1996; 87: 2095 – 147.en_US
dc.identifier.citedreferenceBochner BS, Luscinskas FW, Gimbrone MA et al. Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1‐activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules. J Exp Med 1991; 173: 1553 – 7.en_US
dc.identifier.citedreferenceRusso HM, Wickenheiser KJ, Luo W et al. P‐selectin glycoprotein ligand‐1 regulates adhesive properties of the endothelium and leukocyte trafficking into adipose tissue. Circ Res 2010; 107: 388 – 97.en_US
dc.identifier.citedreferenceDinarello CA. A clinical perspective of IL‐1beta as the gatekeeper of inflammation. Eur J Immunol 2011; 41: 1203 – 17.en_US
dc.identifier.citedreferencevan de Veerdonk FL, Netea MG, Dinarello CA, Joosten LA. Inflammasome activation and IL‐1beta and IL‐18 processing during infection. Trends Immunol 2011; 32: 110 – 16.en_US
dc.identifier.citedreferenceFranchi L, McDonald C, Kanneganti TD, Amer A, Nunez G. Nucleotide‐binding oligomerization domain‐like receptors: intracellular pattern recognition molecules for pathogen detection and host defense. J Immunol 2006; 177: 3507 – 13.en_US
dc.identifier.citedreferenceFranchi L, Park JH, Shaw MH et al. Intracellular NOD‐like receptors in innate immunity, infection and disease. Cell Microbiol 2008; 10: 1 – 8.en_US
dc.identifier.citedreferenceEmbry CA, Franchi L, Nunez G, Mitchell TC. Mechanism of impaired NLRP3 inflammasome priming by monophosphoryl lipid A. Sci Signal 2011; 4: ra28.en_US
dc.identifier.citedreferenceMarina‐Garcia N, Franchi L, Kim YG et al. Clathrin‐ and dynamin‐dependent endocytic pathway regulates muramyl dipeptide internalization and NOD2 activation. J Immunol 2009; 182: 4321 – 7.en_US
dc.identifier.citedreferenceSamavati L, Rastogi R, Du W, Huttemann M, Fite A, Franchi L. STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin‐6 production in response to lipopolysaccharide and live bacteria. Mol Immunol 2009; 46: 1867 – 77.en_US
dc.identifier.citedreferenceFranchi L, Eigenbrod T, Munoz‐Planillo R, Nunez G. The inflammasome: a caspase‐1‐activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 2009; 10: 241 – 7.en_US
dc.identifier.citedreferenceMartinon F, Tschopp J. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 2007; 14: 10 – 22.en_US
dc.identifier.citedreferenceQu Y, Ramachandra L, Mohr S et al. P2X7 receptor‐stimulated secretion of MHC class II‐containing exosomes requires the ASC/NLRP3 inflammasome but is independent of caspase‐1. J Immunol 2009; 182: 5052 – 62.en_US
dc.identifier.citedreferenceMacKenzie A, Wilson HL, Kiss‐Toth E, Dower SK, North RA, Surprenant A. Rapid secretion of interleukin‐1beta by microvesicle shedding. Immunity 2001; 15: 825 – 35.en_US
dc.identifier.citedreferenceAndrei C, Dazzi C, Lotti L, Torrisi MR, Chimini G, Rubartelli A. The secretory route of the leaderless protein interleukin 1beta involves exocytosis of endolysosome‐related vesicles. Mol Biol Cell 1999; 10: 1463 – 75.en_US
dc.identifier.citedreferenceBrough D, Rothwell NJ. Caspase‐1‐dependent processing of pro‐interleukin‐1beta is cytosolic and precedes cell death. J Cell Sci 2007; 120: 772 – 81.en_US
dc.identifier.citedreferenceHorai R, Saijo S, Tanioka H et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist‐deficient mice. J Exp Med 2000; 191: 313 – 20.en_US
dc.identifier.citedreferenceNicklin MJ, Hughes DE, Barton JL, Ure JM, Duff GW. Arterial inflammation in mice lacking the interleukin 1 receptor antagonist gene. J Exp Med 2000; 191: 303 – 12.en_US
dc.identifier.citedreferenceAksentijevich I, Masters SL, Ferguson PJ et al. An autoinflammatory disease with deficiency of the interleukin‐1‐receptor antagonist. N Engl J Med 2009; 360: 2426 – 37.en_US
dc.identifier.citedreferenceReddy VS, Harskamp RE, van Ginkel MW et al. Interleukin‐18 stimulates fibronectin expression in primary human cardiac fibroblasts via PI3K‐Akt‐dependent NF‐kappaB activation. J Cell Physiol 2008; 215: 697 – 707.en_US
dc.identifier.citedreferenceBauernfeind F, Ablasser A, Bartok E et al. Inflammasomes: current understanding and open questions. Cell Mol Life Sci 2011; 68: 765 – 83.en_US
dc.identifier.citedreferenceMartinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL‐beta. Mol Cell 2002; 10: 417 – 26.en_US
dc.identifier.citedreferenceMankan AK, Kubarenko A, Hornung V. Immunology in the clinic review series; focus on autoinflammatory diseases: inflammasomes: mechanisms of activation. Clin Exp Immun 2012; 167: 369 – 81.en_US
dc.identifier.citedreferenceFaustin B, Lartigue L, Bruey JM et al. Reconstituted NALP1 inflammasome reveals two‐step mechanism of caspase‐1 activation. Mol Cell 2007; 25: 713 – 24.en_US
dc.identifier.citedreferenceFranchi L, Amer A, Body‐Malapel M et al. Cytosolic flagellin requires Ipaf for activation of caspase‐1 and interleukin 1beta in salmonella‐infected macrophages. Nat Immunol 2006; 7: 576 – 82.en_US
dc.identifier.citedreferenceMiao EA, Alpuche‐Aranda CM, Dors M et al. Cytoplasmic flagellin activates caspase‐1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 2006; 7: 569 – 75.en_US
dc.identifier.citedreferenceFranchi L, Stoolman J, Kanneganti TD, Verma A, Ramphal R, Nunez G. Critical role for Ipaf in Pseudomonas aeruginosa ‐induced caspase‐1 activation. Eur J Immunol 2007; 37: 3030 – 9.en_US
dc.identifier.citedreferenceAmer A, Franchi L, Kanneganti TD et al. Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 2006; 281: 35217 – 23.en_US
dc.identifier.citedreferenceFranchi L, Warner N, Viani K, Nunez G. Function of Nod‐like receptors in microbial recognition and host defense. Immunol Rev 2009; 227: 106 – 28.en_US
dc.identifier.citedreferenceKofoed EM, Vance RE. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 2011; 477: 592 – 5.en_US
dc.identifier.citedreferenceSuzuki T, Franchi L, Toma C et al. Differential regulation of caspase‐1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella‐infected macrophages. PLoS Pathog 2007; 3: e111.en_US
dc.identifier.citedreferenceMiao EA, Mao DP, Yudkovsky N et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA 2010; 107: 3076 – 80.en_US
dc.identifier.citedreferenceAlnemri ES. Sensing cytoplasmic danger signals by the inflammasome. J Clin Immunol 2010; 30: 512 – 19.en_US
dc.identifier.citedreferenceHornung V, Latz E. Intracellular DNA recognition. Nat Rev Immunol 2010; 10: 123 – 30.en_US
dc.identifier.citedreferenceFranchi L, Kanneganti TD, Dubyak GR, Nunez G. Differential requirement of P2X7 receptor and intracellular K+ for caspase‐1 activation induced by intracellular and extracellular bacteria. J Biol Chem 2007; 282: 18810 – 18.en_US
dc.identifier.citedreferenceKim S, Bauernfeind F, Ablasser A et al. Listeria monocytogenes is sensed by the NLRP3 and AIM2 Inflammasome. Eur J Immunol 2010; 40: 1545 – 51.en_US
dc.identifier.citedreferenceMariathasan S, Weiss DS, Newton K et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006; 440: 228 – 32.en_US
dc.identifier.citedreferenceRathinam VA, Jiang Z, Waggoner SN et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 2010; 11: 395 – 402.en_US
dc.identifier.citedreferenceSauer JD, Witte CE, Zemansky J, Hanson B, Lauer P, Portnoy DA. Listeria monocytogenes triggers AIM2‐mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. Cell Host Microbe 2010; 7: 412 – 19.en_US
dc.identifier.citedreferenceTsuchiya K, Hara H, Kawamura I et al. Involvement of absent in melanoma 2 in inflammasome activation in macrophages infected with Listeria monocytogenes. J Immunol 2010; 185: 1186 – 95.en_US
dc.identifier.citedreferenceMayer‐Barber KD, Barber DL, Shenderov K et al. Caspase‐1 independent IL‐1beta production is critical for host resistance to mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol 2010; 184: 3326 – 30.en_US
dc.identifier.citedreferenceDinarello CA. Interleukin‐1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011; 117: 3720 – 32.en_US
dc.identifier.citedreferenceCassel SL, Sutterwala FS. Sterile inflammatory responses mediated by the NLRP3 inflammasome. Eur J Immunol 2010; 40: 607 – 11.en_US
dc.identifier.citedreferenceFranchi L, Munoz‐Planillo R, Reimer T, Eigenbrod T, Nunez G. Inflammasomes as microbial sensors. Eur J Immunol 2010; 40: 611 – 15.en_US
dc.identifier.citedreferenceKahlenberg JM, Lundberg KC, Kertesy SB, Qu Y, Dubyak GR. Potentiation of caspase‐1 activation by the P2X7 receptor is dependent on TLR signals and requires NF‐kappaB‐driven protein synthesis. J Immunol 2005; 175: 7611 – 22.en_US
dc.identifier.citedreferenceBauernfeind FG, Horvath G, Stutz A et al. Cutting edge: NF‐kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 2009; 183: 787 – 91.en_US
dc.identifier.citedreferenceFranchi L, Eigenbrod T, Nunez G. Cutting edge: TNF‐{alpha} mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol 2009; 183: 792 – 6.en_US
dc.identifier.citedreferenceNetea MG, Nold‐Petry CA, Nold MF et al. Differential requirement for the activation of the inflammasome for processing and release of IL‐1beta in monocytes and macrophages. Blood 2009; 113: 2324 – 35.en_US
dc.identifier.citedreferencePiccini A, Carta S, Tassi S, Lasiglie D, Fossati G, Rubartelli A. ATP is released by monocytes stimulated with pathogen‐sensing receptor ligands and induces IL‐1beta and IL‐18 secretion in an autocrine way. Proc Natl Acad Sci USA 2008; 105: 8067 – 72.en_US
dc.identifier.citedreferenceHarder J, Franchi L, Munoz‐Planillo R, Park JH, Reimer T, Nunez G. Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF‐kappaB activation but proceeds independently of TLR signaling and P2X7 receptor. J Immunol 2009; 183: 5823 – 9.en_US
dc.identifier.citedreferenceMunoz‐Planillo R, Franchi L, Miller LS, Nunez G. A critical role for hemolysins and bacterial lipoproteins in Staphylococcus aureus ‐induced activation of the Nlrp3 inflammasome. J Immunol 2009; 183: 3942 – 8.en_US
dc.identifier.citedreferenceKanneganti TD, Ozoren N, Body‐Malapel M et al. Bacterial RNA and small antiviral compounds activate caspase‐1 through cryopyrin/Nalp3. Nature 2006; 440: 233 – 6.en_US
dc.identifier.citedreferenceRathinam VA, Fitzgerald KA. Inflammasomes and anti‐viral immunity. J Clin Immunol 2010; 30: 632 – 7.en_US
dc.identifier.citedreferenceJoly S, Sutterwala FS. Fungal pathogen recognition by the NLRP3 inflammasome. Virulence 2010; 1: 276 – 80.en_US
dc.identifier.citedreferenceFerrari D, Pizzirani C, Adinolfi E et al. The P2X7 receptor: a key player in IL‐1 processing and release. J Immunol 2006; 176: 3877 – 83.en_US
dc.identifier.citedreferenceMartinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout‐associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440: 237 – 41.en_US
dc.identifier.citedreferenceDuewell P, Kono H, Rayner KJ et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464: 1357 – 61.en_US
dc.identifier.citedreferenceMasters SL, Dunne A, Subramanian SL et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL‐1beta in type 2 diabetes. Nat Immunol 2010; 11: 897 – 904.en_US
dc.identifier.citedreferenceHornung V, Bauernfeind F, Halle A et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 2008; 9: 847 – 56.en_US
dc.identifier.citedreferenceFranchi L, Chen G, Marina‐Garcia N et al. Calcium‐independent phospholipase A2beta is dispensable for inflammasome activation and its inhibition by bromoenol lactone. J Innate Immun 2009; 1: 607 – 17.en_US
dc.identifier.citedreferenceMeissner F, Molawi K, Zychlinsky A. Superoxide dismutase 1 regulates caspase‐1 and endotoxic shock. Nat Immunol 2008; 9: 866 – 72.en_US
dc.identifier.citedreferenceBauernfeind F, Bartok E, Rieger A, Franchi L, Nunez G, Hornung V. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol 2011; 187: 613 – 17.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.