Show simple item record

Revisiting the Response Mechanism of Polymeric Membrane Based Heparin Electrodes

dc.contributor.authorBell, Andrea K.en_US
dc.contributor.authorHöfler, Lajosen_US
dc.contributor.authorMeyerhoff, Mark E.en_US
dc.date.accessioned2012-03-16T16:01:45Z
dc.date.available2013-03-04T15:29:56Zen_US
dc.date.issued2012-01en_US
dc.identifier.citationBell, Andrea K.; Höfler, Lajos ; Meyerhoff, Mark E. (2012). "Revisiting the Response Mechanism of Polymeric Membrane Based Heparin Electrodes." Electroanalysis 24(1): 53-59. <http://hdl.handle.net/2027.42/90404>en_US
dc.identifier.issn1040-0397en_US
dc.identifier.issn1521-4109en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90404
dc.description.abstractPotentiometric membrane electrodes that respond to heparin and other polyanions were introduced in the early 1990s. Herein, the mechanism of polymer membrane electrode type heparin sensors is revisited. The extraction/diffusion of heparin is studied via both potentiometric and impedance spectroscopic techniques using a prefractionated heparin preparation that contains polyanionic species >10 000 Daltons. The reversal in EMF response using this heparin preparation indicates diffusion of higher MW heparin fragments to the backside of the membrane. Diffusion coefficients are calculated using a novel formula derived from the phase boundary potential model and Fick′s second law of diffusion. Impedance spectroscopy is also employed to show that high MW heparin species are extracted and diffuse across the PVC membranes.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherHeparinen_US
dc.subject.otherDiffusion Coefficientsen_US
dc.subject.otherIon‐Selective Membraneen_US
dc.subject.otherTransport Mechanismen_US
dc.titleRevisiting the Response Mechanism of Polymeric Membrane Based Heparin Electrodesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109‐1055, USAen_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109‐1055, USAen_US
dc.identifier.pmid23293506en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90404/1/53_ftp.pdf
dc.identifier.doi10.1002/elan.201100423en_US
dc.identifier.sourceElectroanalysisen_US
dc.identifier.citedreferenceCarbohydrates as Drugs‐Heparin Oligosaccharides‐New Analogs Development and Applications (Eds: R. J. Linhardt, T. Toida, Z. B. Witczak, K. A. Neiforth, ) Marcel Dekker, New York 1997, pp.  277 – 341.en_US
dc.identifier.citedreferenceR. J. Linhardt, J. Med. Chem. 2003, 46, 2551.en_US
dc.identifier.citedreferenceE. Bakker, P. Bühlmann, E. Pretsch, Talanta 2004, 63, 3.en_US
dc.identifier.citedreferenceM. Nägele, E. Bakker, E. Pretsch, Anal. Chem. 1999, 71, 1041.en_US
dc.identifier.citedreferenceB. Fu, E. Bakker, V. C. Yang, M. E. Meyerhoff, Macromolecules 1995, 28, 5834.en_US
dc.identifier.citedreferenceQ. Ye, M. E. Meyerhoff, Anal. Chem. 2001, 73, 332.en_US
dc.identifier.citedreferenceJ. Langmaier, J. Olsak, E. Samcova, Z. Samec, A. Trojanek, Electroanalysis 2005, 2, 115.en_US
dc.identifier.citedreferenceJ. Langmaier, J. Olsak, E. Samcova, Z. Samec, A. Trojanek, Electroanalysis 2006, 13–14, 1329.en_US
dc.identifier.citedreferenceP. Jing, Y. Kim, S. Amemiya, Langmuir 2009, 25, 13653.en_US
dc.identifier.citedreferenceP. J. Rodgers, P. Jing, Y. Kim, S. Amemiya, J. Am. Chem. Soc. 2008, 130, 7436.en_US
dc.identifier.citedreferenceJ. Guo, Y. Yuan, S. Amemiya, Anal. Chem. 2005, 77, 5711.en_US
dc.identifier.citedreferenceU. Oesch, W. Simon, Anal. Chem. 1980, 52, 692.en_US
dc.identifier.citedreferenceS. Bertini, A. Bisio, G. Torri, D. Bensi, M. Terbojevich, Biomacromolecules 2005, 6, 168.en_US
dc.identifier.citedreferenceJ. R. Sandifer, M. L. Iglehart, R. P. Buck, Anal. Chem. 1989, 61, 1624.en_US
dc.identifier.citedreferenceT. Lindfors, L. Höfler, G. Jágerszki, R. E. Gyurcsányi, Anal. Chem. 2011, 83, 4902.en_US
dc.identifier.citedreferenceT. Sokalski, P. Lingenfelter, A. Lewenstam, J. Phys. Chem. B 2003, 107, 2443.en_US
dc.identifier.citedreferenceI. Linossier, F. Gaillard, M. Romand, J. R. Feller, J. Appl. Polym. Sci. 1997, 66, 2465.en_US
dc.identifier.citedreferenceA. Ceresa, A. Radu, S. Peper, E. Bakker, E. Pretsch, Anal. Chem. 2002, 74, 4027.en_US
dc.identifier.citedreferenceS. Ma, M. E. Meyerhoff, V. C. Yang, Anal. Chem. 1992, 64, 694.en_US
dc.identifier.citedreferenceS. Ma, V. C. Yang, B. Fu, M. E. Meyerhoff, Anal. Chem. 1993, 65, 2078.en_US
dc.identifier.citedreferenceB. Fu, E. Bakker, J. H. Yun, V. C. Yang, M. E. Meyerhoff, Anal. Chem. 1994, 66, 2250.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.