Show simple item record

Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

dc.contributor.authorBulfer, Stacie Lynneen_US
dc.contributor.authorHendershot, Jenna M.en_US
dc.contributor.authorTrievel, Raymond C.en_US
dc.date.accessioned2012-03-16T16:01:55Z
dc.date.available2013-04-01T14:17:26Zen_US
dc.date.issued2012-02en_US
dc.identifier.citationBulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C. (2012). "Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe ." Proteins: Structure, Function, and Bioinformatics 80(2): 661-666. <http://hdl.handle.net/2027.42/90410>en_US
dc.identifier.issn0887-3585en_US
dc.identifier.issn1097-0134en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90410
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherX‐Ray Crystallographyen_US
dc.subject.otherAmino Acid Metabolismen_US
dc.subject.otherLysine Biosynthesisen_US
dc.subject.otherβ‐Hydroxyacid Oxidative Decarboxylaseen_US
dc.titleCrystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombeen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biological Chemistry, University of Michigan, 5301 Medical Science Research Building III, 1150 West Medical Center Drive, SPC 5606, Ann Arbor, MI 48109en_US
dc.contributor.affiliationumDepartment of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90410/1/PROT_23231_sm_suppinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90410/2/23231_ftp.pdf
dc.identifier.doi10.1002/prot.23231en_US
dc.identifier.sourceProteins: Structure, Function, and Bioinformaticsen_US
dc.identifier.citedreferencePeng Y, Zhong C, Huang W, Ding J. Structural studies of Saccharomyces cerevesiae mitochondrial NADP‐dependent isocitrate dehydrogenase in different enzymatic states reveal substantial conformational changes during the catalytic reaction. Protein Sci 2008; 17: 1542 – 1554.en_US
dc.identifier.citedreferenceMiyazaki J, Kobashi N, Nishiyama M, Yamane H. Characterization of homoisocitrate dehydrogenase involved in lysine biosynthesis of an extremely thermophilic bacterium, Thermus thermophilus HB27, and evolutionary implication of beta‐decarboxylating dehydrogenase. J Biol Chem 2003; 278: 1864 – 1871.en_US
dc.identifier.citedreferenceNango E, Yamamoto T, Kumasaka T, Eguchi T. Structure of Thermus thermophilus homoisocitrate dehydrogenase in complex with a designed inhibitor. J Biochem, in press; PMID: 21813504.en_US
dc.identifier.citedreferenceOtwinowski Z, Minor W. Processing of X‐ray diffraction data collected in oscillation mode. Methods Enzymol 1997; 276: 307 – 326.en_US
dc.identifier.citedreferenceStein N. CHAINSAW: a program for mutating pdb files used as templates in molecular replacement. J Appl Crystallogr 2008; 41: 641 – 643.en_US
dc.identifier.citedreferenceVagin AA, Teplyakov, A. MOLREP: an automated program for molecular replacement. J Appl Crystallogr 1997; 30: 1022 – 1025.en_US
dc.identifier.citedreferenceEmsley P, Cowtan K. Coot: model‐building tools for molecular graphics. Acta Crystallogr Sect D: Biol Crystallogr 2004; 60: 2126 – 2132.en_US
dc.identifier.citedreferenceMurshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum‐likelihood method. Acta Crystallogr Sect D: Biol Crystallogr 1997; 53: 240 – 255.en_US
dc.identifier.citedreferenceWinn MD, Murshudov GN, Papiz MZ. Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol 2003; 374: 300 – 321.en_US
dc.identifier.citedreferenceDavis IW, Leaver‐Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, 3rd, Snoeyink J, Richardson JS, Richardson DC. MolProbity: all‐atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 2007; 35: 375 – 383.en_US
dc.identifier.citedreferenceBrunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse‐Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr Sect D: Biol Crystallogr 1998; 54: 905 – 921.en_US
dc.identifier.citedreferenceHurley JH, Thorsness PE, Ramalingam V, Helmers NH, Koshland DE, Jr, Stroud RM. Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase. Proc Natl Acad Sci USA 1989; 86: 8635 – 8639.en_US
dc.identifier.citedreferenceMesecar AD, Stoddard BL, Koshland DE, Jr. Orbital steering in the catalytic power of enzymes: small structural changes with large catalytic consequences. Science 1997; 277: 202 – 206.en_US
dc.identifier.citedreferenceImada K, Inagaki K, Matsunami H, Kawaguchi H, Tanaka H, Tanaka N, Namba K. Structure of 3‐isopropylmalate dehydrogenase in complex with 3‐isopropylmalate at 2.0. A resolution: the role of Glu88 in the unique substrate‐recognition mechanism. Structure 1998; 6: 971 – 982.en_US
dc.identifier.citedreferenceImada K, Sato M, Tanaka N, Katsube Y, Matsuura Y, Oshima T. Three‐dimensional structure of a highly thermostable enzyme, 3‐isopropylmalate dehydrogenase of Thermus thermophilus at 2.2 A resolution. J Mol Biol 1991; 222: 725 – 738.en_US
dc.identifier.citedreferenceFiner‐Moore J, Tsutakawa SE, Cherbavaz DR, LaPorte DC, Koshland DE, Jr, Stroud RM. Access to phosphorylation in isocitrate dehydrogenase may occur by domain shifting. Biochemistry 1997; 36: 13890 – 13896.en_US
dc.identifier.citedreferenceHurley JH, Dean AM. Structure of 3‐isopropylmalate dehydrogenase in complex with NAD+: ligand‐induced loop closing and mechanism for cofactor specificity. Structure 1994; 2: 1007 – 1016.en_US
dc.identifier.citedreferenceKadono S, Sakurai M, Moriyama H, Sato M, Hayashi Y, Oshima T, Tanaka N. Ligand‐induced changes in the conformation of 3‐isopropylmalate dehydrogenase from Thermus thermophilus. J Biochem 1995; 118: 745 – 752.en_US
dc.identifier.citedreferenceHurley JH, Dean AM, Sohl JL, Koshland DE, Jr, Stroud RM. Regulation of an enzyme by phosphorylation at the active site. Science 1990; 249: 1012 – 1016.en_US
dc.identifier.citedreferenceChen R, Jeong SS. Functional prediction: identification of protein orthologs and paralogs. Protein Sci 2000; 9: 2344 – 2353.en_US
dc.identifier.citedreferenceYaoi T, Miyazaki K, Oshima T. Substrate recognition of isocitrate dehydrogenase and 3‐isopropylmalate dehydrogenase from Thermus thermophilus HB8. J Biochem 1997; 121: 77 – 81.en_US
dc.identifier.citedreferenceXu H, Andi B, Qian J, West AH, Cook PF. The alpha‐aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem Biophys 2006; 46: 43 – 64.en_US
dc.identifier.citedreferenceGarrad RC, Bhattacharjee JK. Lysine biosynthesis in selected pathogenic fungi: characterization of lysine auxotrophs and the cloned LYS1 gene of Candida albicans. J Bacteriol 1992; 174: 7379 – 7384.en_US
dc.identifier.citedreferenceAktas DF, Cook PF. A lysine‐tyrosine pair carries out acid‐base chemistry in the metal ion‐dependent pyridine dinucleotide‐linked beta‐hydroxyacid oxidative decarboxylases. Biochemistry 2009; 48: 3565 – 3577.en_US
dc.identifier.citedreferenceLin Y, Alguindigue SS, Volkman J, Nicholas KM, West AH, Cook PF. Complete kinetic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Biochemistry 2007; 46: 890 – 898.en_US
dc.identifier.citedreferenceLin Y, West AH, Cook PF. Site‐directed mutagenesis as a probe of the acid‐base catalytic mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Biochemistry 2009; 48: 7305 – 7312.en_US
dc.identifier.citedreferenceMiyazaki J, Asada K, Fushinobu S, Kuzuyama T, Nishiyama M. Crystal structure of tetrameric homoisocitrate dehydrogenase from an extreme thermophile, Thermus thermophilus: involvement of hydrophobic dimer‐dimer interaction in extremely high thermotolerance. J Bacteriol 2005; 187: 6779 – 6788.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.