Show simple item record

The Importance of Stereochemically Active Lone Pairs For Influencing Pb II and As III Protein Binding

dc.contributor.authorZampella, Giuseppeen_US
dc.contributor.authorNeupane, Kosh P.en_US
dc.contributor.authorDe gioia, Lucaen_US
dc.contributor.authorPecoraro, Vincent L.en_US
dc.date.accessioned2012-03-16T16:02:00Z
dc.date.available2013-04-01T14:17:26Zen_US
dc.date.issued2012-02-13en_US
dc.identifier.citationZampella, Giuseppe; Neupane, Kosh P.; De gioia, Luca ; Pecoraro, Vincent L. (2012). "The Importance of Stereochemically Active Lone Pairs For Influencing Pb II and As III Protein Binding." Chemistry â A European Journal 18(7): 2040-2050. <http://hdl.handle.net/2027.42/90414>en_US
dc.identifier.issn0947-6539en_US
dc.identifier.issn1521-3765en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90414
dc.description.abstractThe toxicity of heavy metals, which is associated with the high affinity of the metals for thiolate rich proteins, constitutes a problem worldwide. However, despite this tremendous toxicity concern, the binding mode of As III and Pb II to proteins is poorly understood. To clarify the requirements for toxic metal binding to metalloregulatory sensor proteins such as As III in ArsR/ArsD and Pb II in PbrR or replacing Zn II in δ‐aminolevulinc acid dehydratase (ALAD), we have employed computational and experimental methods examining the binding of these heavy metals to designed peptide models. The computational results show that the mode of coordination of As III and Pb II is greatly influenced by the steric bulk within the second coordination environment of the metal. The proposed basis of this selectivity is the large size of the ion and, most important, the influence of the stereochemically active lone pair in hemidirected complexes of the metal ion as being crucial. The experimental data show that switching a bulky leucine layer above the metal binding site by a smaller alanine residue enhances the Pb II  binding affinity by a factor of five, thus supporting experimentally the hypothesis of lone pair steric hindrance. These complementary approaches demonstrate the potential importance of a stereochemically active lone pair as a metal recognition mode in proteins and, specifically, how the second coordination sphere environment affects the affinity and selectivity of protein targets by certain toxic ions. Experimental and computational methods have been employed to study the influence of the lone pair of As III and Pb II for the binding of these ions in proteins using designed peptide models. The results show that the mode of coordination of As III and Pb II is greatly influenced by the steric bulk within the second coordination environment of the metals (see figure).en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherHeavy Metal Toxicityen_US
dc.subject.otherLone Pairsen_US
dc.subject.otherSelective Bindingen_US
dc.subject.otherArsenicen_US
dc.subject.otherLeaden_US
dc.titleThe Importance of Stereochemically Active Lone Pairs For Influencing Pb II and As III Protein Bindingen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA), Tel.: (+1) 734‐763‐1519, Fax: (+1) 734‐936‐7628 address:en_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA), Tel.: (+1) 734‐763‐1519, Fax: (+1) 734‐936‐7628 address:en_US
dc.contributor.affiliationotherDepartment of Biotechnology and Biosciences, Università degli Studi di Milano‐Bicocca, Piazza della Scienza 2, 20126, Milano (Italy), Tel: (+39) 02‐64483416, Fax: (+39) 02‐64483478 address:en_US
dc.contributor.affiliationotherDepartment of Biotechnology and Biosciences, Università degli Studi di Milano‐Bicocca, Piazza della Scienza 2, 20126, Milano (Italy), Tel: (+39) 02‐64483416, Fax: (+39) 02‐64483478 address:en_US
dc.identifier.pmid22231489en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90414/1/chem_201102786_sm_miscellaneous_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90414/2/2040_ftp.pdf
dc.identifier.doi10.1002/chem.201102786en_US
dc.identifier.sourceChemistry – A European Journalen_US
dc.identifier.citedreferenceE. K. O’Shea, R. Rutkowski, P. S. Kim, Science 1989, 243, 538 – 542.en_US
dc.identifier.citedreferenceJ. P. Perdew, Phys. Rev. B 1986, 33, 8822 – 8824.en_US
dc.identifier.citedreferenceK. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119 – 124.en_US
dc.identifier.citedreferenceW. Koch, M. C. Holthausen, E. J. Baerends, A Chemist’s Guide to Density Functional Theory, Wiley‐VCH, 2002.en_US
dc.identifier.citedreferenceG. R. Dieckmann, D. K. McRorie, J. D. Lear, K. A. Sharp, W. F. DeGrado, V. L. Pecoraro, J. Mol. Biol. 1998, 280, 897 – 912.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. S. Magyar, T. C. Weng, C. M. Stern, D. F. Dye, B. W. Rous, J. C. Payne, B. M. Bridgewater, A. Mijovilovich, G. Parkin, J. M. Zaleski, J. E. Penner‐Hahn, H. A. Godwin, J. Am. Chem. Soc. 2005, 127, 9495 – 9505;en_US
dc.identifier.citedreferenceA. A. Jarzȩcki, Inorg. Chem. 2007, 46, 7509 – 7521.en_US
dc.identifier.citedreferenceM. Matzapetakis in Use of heavy metal binding de novo designed alpha‐helical peptides as models for understanding metalloproteins, Vol. PhD thesis, University of Michigan, 2004, pp.  1 – 249.en_US
dc.identifier.citedreferenceO. Iranzo, T. Jakusch, K. H. Lee, L. Hemmingsen, V. L. Pecoraro, Chem. Eur. J. 2009, 15, 3761 – 3772.en_US
dc.identifier.citedreferenceO. Iranzo, D. Ghosh, V. L. Pecoraro, Inorg. Chem. 2006, 45, 9959 – 9973.en_US
dc.identifier.citedreferenceK. P. Neupane, V. L. Pecoraro, J. Inorg. Biochem. 2011, 105, 1030 – 1034.en_US
dc.identifier.citedreferenceG. Christou, K. Folting, J. C. Huffman, Polyhedron 1984, 3, 1247 – 1253.en_US
dc.identifier.citedreferenceM. A. Pitt, L. N. Zakharov, K. Vanka, W. H. Thompson, B. B. Laird, D. W. Johnson, Chem. Commun. 2008, 3936 – 3938.en_US
dc.identifier.citedreferenceV. M. Cangelosi, L. N. Zakharov, J. L. Crossland, B. C. Franklin, D. W. Johnson, Cryst. Growth Des. 2010, 10, 1471 – 1473.en_US
dc.identifier.citedreferenceA. A. Auer, D. Mansfeld, C. Nolde, W. Schneider, M. Schurmann, M. Mehring, Organometallics 2009, 28, 5405 – 5411.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. Starbuck, N. C. Norman, A. G. Orpen, New J. Chem. 1999, 23, 969 – 972;en_US
dc.identifier.citedreferenceN. K. Szymczak, F. S. Han, D. R. Tyler, Dalton Trans. 2004, 3941 – 3942;en_US
dc.identifier.citedreferenceH. Barucki, S. J. Coles, J. F. Costello, T. Gelbrich, M. B. Hursthouse, Dalton Trans. 2000, 2319 – 2325;en_US
dc.identifier.citedreferenceG. A. Landrum, R. Hoffmann, Angew. Chem. 1998, 110, 1989 – 1992; Angew. Chem. Int. Ed. 1998, 37, 1887 – 1890.en_US
dc.identifier.citedreferenceK. P. Neupane, V. L. Pecoraro, Unpublished data.en_US
dc.identifier.citedreferenceK. H. Lee, C. Cabello, L. Hemmingsen, E. N. G. Marsh, V. L. Pecoraro, Angew. Chem. 2006, 118, 2930 – 2934.en_US
dc.identifier.citedreferenceA. F. A. Peacock, O. Iranzo, V. L. Pecoraro, Dalton Trans. 2009, 2271 – 2280.en_US
dc.identifier.citedreferenceO. Iranzo, C. Cabello, V. L. Pecoraro, Angew. Chem. 2007, 119, 6808 – 6811; Angew. Chem. Intl. Ed. 2007, 46, 6688 – 6691.en_US
dc.identifier.citedreferenceCenters for Disease Control and Prevention. Morbidity and Mortality Weekly Report, Vol. 49, 2000, pp. 1133–1137.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceM. M. Rahman, M. K. Sengupta, S. Ahamed, U. K. Chowdhury, D. Lodh, A. Hossain, B. Das, N. Roy, K. C. Saha, S. K. Palit, D. Chakraborti, Bull. WHO. 2005, 83, 49 – 57;en_US
dc.identifier.citedreferenceWHO, Guideline for Drinking Water Quality Recommendation:, World Health Organization, Geneva, 1992.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceW. C. Chou, C. Jie, A. A. Kenedy, R. J. Jones, M. A. Trush, C. V. Dang, Proc. Natl. Acad. Sci. USA 2004, 101, 4578 – 4583;en_US
dc.identifier.citedreferenceI. Szivák, R. Behra, L. Sigg, J. Phycol. 2009, 45, 427 – 435.en_US
dc.identifier.citedreferenceA. M. Spuches, H. G. Kruszyna, A. M. Rich, D. E. Wilcox, Inorg. Chem. 2005, 44, 2964 – 2972.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceH. A. Godwin, Curr. Opin. Chem. Biol. 2001, 5, 223 – 227;en_US
dc.identifier.citedreferenceT. J. B. Simons, Neurotoxicology 1993, 14, 77 – 85;en_US
dc.identifier.citedreferenceM. J. Warren, J. B. Cooper, S. P. Wood, P. M. Shoolingin‐Jordan, Trends Biochem. Sci. 1998, 23, 217 – 221.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceW. R. Cullen, M. Styblo, S. V. Serves, D. S. Thomas, Chem. Res. Toxicol. 1997, 10, 27 – 33;en_US
dc.identifier.citedreferenceS. Lin, W. R. Cullen, D. J. Thomas, Chem. Res. Toxicol. 1999, 12, 924 – 930;en_US
dc.identifier.citedreferenceJ. S. Petrick, J. Bhumasamudram, E. A. Mash, H. V. Aposhian, Chem. Res. Toxicol. 2001, 14, 651 – 656;en_US
dc.identifier.citedreferenceT. J. B. Simons, Eur. J. Biochem. 1995, 234, 178 – 183.en_US
dc.identifier.citedreferenceD. R. McNeill, A. Narayana, H. K. Wong, D. M. Wilson, Environ. Health Perspect. 2004, 112, 799 – 804.en_US
dc.identifier.citedreferenceW. H. Miller, H. M. Schipper, J. S. Lee, J. Singer, S. Waxman, Cancer Res. 2002, 62, 3893 – 3903.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceM. Takiguchi, W. E. Achanzar, W. Qu, G. Li, M. P. Waalkes, Exp. Cell Res. 2003, 286, 355 – 365;en_US
dc.identifier.citedreferenceC. Q. Zhao, M. R. Young, B. A. Diwan, T. P. Coogan, M. P. Waalkes, Proc. Natl. Acad. Sci. USA 1997, 94, 10907 – 10912.en_US
dc.identifier.citedreferenceC. M. Chen, T. Misra, S. Silver, B. P. Rosen, J. Biol. Chem. 1986, 261, 15030 – 15038.en_US
dc.identifier.citedreferenceZ. Liu, J. Shen, J. M. Carbrey, R. Mukhopadhyay, P. Agre, B. P. Rosen, Proc. Natl. Acad. Sci. USA 2002, 99, 6053 – 6605.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceH. Rosenberg, R. G. Gerdes, K. Chegwidden, J. Bacteriol. 1977, 131, 505 – 511;en_US
dc.identifier.citedreferenceO. I. Sanders, C. Rensing, M. Kuroda, B. Mitra, B. P. Rosen, J. Bacteriol. 1997, 179, 3365 – 3367.en_US
dc.identifier.citedreferenceB. P. Rosen, FEBS Lett. 2002, 529, 86 – 92.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceA. Gyurasics, F. Varga, Z. Gregus, Biochem. Pharmacol. 1991, 42, 465 – 468;en_US
dc.identifier.citedreferenceS. V. Kala, M. W. Neely, G. Kala, C. I. Prater, D. W. Atwood, J. S. Rice, M. W. Lieberman, J. Biol. Chem. 2000, 275, 33404 – 33408.en_US
dc.identifier.citedreferenceB. Borremans, J. L. Hobman, A. Provoost, N. L. Brown, D. v. d. Lelie, J. Bacteriol. 2001, 183, 5651 – 5658.en_US
dc.identifier.citedreferenceP. Chen, B. Greenberg, S. Taghavi, C. Romano, D. van der Lelie, C. A. He, Angew. Chem. 2005, 117, 2775 – 2779; Angew. Chem. Int. Ed. 2005, 44, 2715 – 2719.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. D. Helmann, B. T. Ballard, C. T. Walsh, Science 1990, 247, 946 – 948;en_US
dc.identifier.citedreferenceJ. G. Wright, H. T. Tsang, J. E. Penner‐Hahn, T. V. O’Halloran, J. Am. Chem. Soc. 1990, 112, 2434 – 2435;en_US
dc.identifier.citedreferenceQ. D. Zeng, C. Stalhandske, M. C. Anderson, R. A. Scott, A. O. Summers, Biochemistry 1998, 37, 15885 – 15895.en_US
dc.identifier.citedreferenceP. R. Chen, C. He, Curr. Opin. Chem. Biol. 2008, 12, 214 – 221.en_US
dc.identifier.citedreferenceJ. M. Johnson, C. Voegtlin, J. Biol. Chem. 1930, 89, 27 – 31.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceM. Delnomdedieu, M. M. Basti, J. D. Otvos, D. J. Thomas, Chem. Res. Toxicol. 1993, 6, 598 – 602;en_US
dc.identifier.citedreferenceW. B. T. Cruse, M. N. G. James, Acta Crystallogr. B 1972, 28, 1325 – 1331;en_US
dc.identifier.citedreferenceK. Poleć‐Pawlak, R. Ruzika, E. Lipiec, Talanta 2007, 72, 1564 – 1572.en_US
dc.identifier.citedreferenceJ. Liu, B. P. Rosen, J. Biol. Chem. 1997, 272, 21084 – 21089.en_US
dc.identifier.citedreferenceP. R. Chen, E. C. Wasinger, J. Zhao, D. van der Lelie, L. X. Chen, C. He, J. Am. Chem. Soc. 2007, 129, 12350 – 12351.en_US
dc.identifier.citedreferenceL. Shimoni‐Livny, J. P. Glusker, C. W. Bock, Inorg. Chem. 1998, 37, 1853 – 1867.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. Parr, Polyhedron 1997, 16, 551 – 566;en_US
dc.identifier.citedreferenceK. Abu‐Dari, F. E. Hahn, K. N. Raymond, J. Am. Chem. Soc. 1990, 112, 1519 – 1524;en_US
dc.identifier.citedreferenceK. Abu‐Dari, T. B. Karpishin, K. N. Raymond, Inorg. Chem. 1993, 32, 3052 – 3055;en_US
dc.identifier.citedreferenceS. Rupprecht, S. J. Franklin, K. N. Raymond, Inorg. Chim. Acta 1995, 235, 185 – 194;en_US
dc.identifier.citedreferenceS. Rupprecht, K. Langemann, T. Lugger, J. M. McCormick, K. N. Raymond, Inorg. Chim. Acta 1996, 243, 79 – 90.en_US
dc.identifier.citedreferenceT. A. Shaikha, R. C. Bakus, S. Parkina, D. A. Atwood, J. Organomet. Chem. 2006, 691, 1825 – 1833.en_US
dc.identifier.citedreferenceB. T. Farrer, C. P. McClure, J. E. Penner‐Hahn, V. L. Pecoraro, Inorg. Chem. 2000, 39, 5422 – 5423.en_US
dc.identifier.citedreferenceD. S. Touw, C. E. Nordman, J. A. Stuckey, V. L. Pecoraro, Proc. Natl. Acad. Sci. USA 2007, 104, 11969 – 11974.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceT. G. Carter, E. R. Healey, M. A. Pitt, D. W. Johnson, Inorg. Chem. 2005, 44, 9634 – 9636;en_US
dc.identifier.citedreferenceW. J. Vickaryous, R. Herges, D. W. Johnson, Angew. Chem. 2004, 116, 5955 – 5957; Angew. Chem. Int. Ed. 2004, 43, 5831 – 5833.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceT. S. Franczyk, K. R. Czerwinski, K. N. Raymond, J. Am. Chem. Soc. 1992, 114, 8138 – 8146;en_US
dc.identifier.citedreferenceP. H. Walton, K. N. Raymond, Inorg. Chim. Acta 1995, 240, 593 – 601.en_US
dc.identifier.citedreferenceA. S. Borovik, T. M. Dewey, K. N. Raymond, Inorg. Chem. 1993, 32, 413 – 421.en_US
dc.identifier.citedreferenceA. S. Borovik, J. D. Bois, K. N. Raymond, Angew. Chem. 1995, 107, 1473 – 1476; Angew. Chem. Int. Ed. Engl. 1995, 34, 1359 – 1362.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceS. Chakraborty, D. S. Touw, A. F. A. Peacock, J. Stuckey, V. L. Pecoraro, J. Am. Chem. Soc. 2010, 132, 13240 – 13250;en_US
dc.identifier.citedreferenceA. F. A. Peacock, M. Stachura, L. Hemmingsen, V. L. Pecoraro, Proc. Natl. Acad. Sci. 2008, 105, 16566 – 16571.en_US
dc.identifier.citedreferenceW. C. Chan, P. D. White, Fmoc Solid‐Phase Peptide Synthesis: A Practical Approach, Oxford University Press, New York, 2000.en_US
dc.identifier.citedreferenceK. P. Neupane, V. L. Pecoraro, Angew. Chem. 2010, 122, 8353 – 8356; Angew. Chem. Int. Ed. 2010, 49, 8177 – 8180.en_US
dc.identifier.citedreferenceG. L. Ellman, Arch. Biochem. Biophys. 1958, 74, 443 – 450.en_US
dc.identifier.citedreferenceM. Matzapetakis, D. Ghosh, T. C. Weng, J. E. Penner‐Hahn, V. L. Pecoraro, J. Biol. Inorg. Chem. 2006, 11, 876 – 890.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceY. H. Chen, J. T. Yang, K. H. Chau, Biochemistry 1974, 13, 3350 – 3359;en_US
dc.identifier.citedreferenceD. K. Ryan, J. H. Weber, Anal. Chem. 1982, 54, 986 – 990.en_US
dc.identifier.citedreferenceC. Cobas, J. Cruces, F. J. Sardina in MestRe‐C version 2.3, Vol. Universidad de Santiago de Compostela, Spain, 2000.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceA. D. Becke, Phys. Rev. A 1988, 38, 3098 – 3100;en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.