Show simple item record

Carbon(sp 3 )Fluorine Bond‐Forming Reductive Elimination from Palladium(IV) Complexes

dc.contributor.authorRacowski, Joy M.en_US
dc.contributor.authorGary, J. Brannonen_US
dc.contributor.authorSanford, Melanie S.en_US
dc.date.accessioned2012-04-04T18:42:09Z
dc.date.available2013-06-11T19:15:40Zen_US
dc.date.issued2012-04-02en_US
dc.identifier.citationRacowski, Joy M.; Gary, J. Brannon; Sanford, Melanie S. (2012). "Carbon(sp 3 )Fluorine Bond‐Forming Reductive Elimination from Palladium(IV) Complexes ." Angewandte Chemie 124(14): 3470-3473. <http://hdl.handle.net/2027.42/90520>en_US
dc.identifier.issn0044-8249en_US
dc.identifier.issn1521-3757en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90520
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherPalladiumen_US
dc.subject.otherChemoselektivitäTen_US
dc.subject.otherFluorierte Ligandenen_US
dc.subject.otherHomogene Katalyseen_US
dc.subject.otherRedoxchemieen_US
dc.titleCarbon(sp 3 )Fluorine Bond‐Forming Reductive Elimination from Palladium(IV) Complexesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109 (USA)en_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109 (USA)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90520/1/ange_201107816_sm_miscellaneous_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90520/2/3470_ftp.pdf
dc.identifier.doi10.1002/ange.201107816en_US
dc.identifier.sourceAngewandte Chemieen_US
dc.identifier.citedreferenceA. J. Canty, Dalton Trans. 2009, 10409 – 10417;en_US
dc.identifier.citedreferenceN. D. Ball, J. B. Gary, Y. Ye, M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 7577 – 7584.en_US
dc.identifier.citedreferenceV. V. Grushin, Chem. Eur. J. 2002, 8, 1006 – 1014.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceP. Sehnal, R. J. K. Taylor, I. J. S. Fairlamb, Chem. Rev. 2010, 110, 824 – 889;en_US
dc.identifier.citedreferenceJ. M. Racowski, M. S. Sanford, Top. Organomet. Chem. 2010, 53, 63 – 84.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceD. W. Kim, C. E. Song, D. Y. Chi, J. Org. Chem. 2003, 68, 4281 – 4285;en_US
dc.identifier.citedreferenceJ. A. Wilkinson, Chem. Rev. 1992, 92, 505 – 519.en_US
dc.identifier.citedreferenceThermolysis of complexes 2 and 4 gave complex and intractable mixtures of products. We hypothesize that this result may be due to decomposition of the initially formed reductive elimination products (analogues of 6 and 7 ), because these Pd II species would contain highly labile H 2 O and/or OTf ligands.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. F. Hartwig, Organotransition Metal Chemistry: From Bonding to Catalysis, University Science Books, Sausalito, 2010, pp.  332 – 333;en_US
dc.identifier.citedreferenceJ. F. Hartwig, Nature 2008, 455, 314 – 322;en_US
dc.identifier.citedreferenceA. J. Canty, Acc. Chem. Res. 1992, 25, 83 – 90.en_US
dc.identifier.citedreferenceReductive elimination from 5 is inhibited by added NMe 4 F. For example, k was 5.75×10 −4  s −1 without added NMe 4 F and 3.26×10 −4  s −1 in the presence of 2.4 equivalents of NMe 4 F. This result is consistent with reductive elimination from 5 proceeding by an analogous pathway to that proposed for 3.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceR. H. Crabtree, The Organometallic Chemistry of Transition Metals, Wiley, Hoboken, NJ, 2005;en_US
dc.identifier.citedreferenceP. R. Mitchell, P. V. Parish, J. Chem. Educ. 1969, 46, 811 – 814.en_US
dc.identifier.citedreferenceM. J. Frisch, et al. Gaussian 09, Gaussian Inc.: Wallingford, CT, 2009 (see the Supporting Information for the complete reference).en_US
dc.identifier.citedreferenceY. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215 – 241.en_US
dc.identifier.citedreferenceW. J. Stevens, H. Basch, M. Krauss, J. Chem. Phys. 1984, 81, 6026 – 6033.en_US
dc.identifier.citedreferenceW. J. Stevens, M. Krauss, H. Basch, P. G. Jasien, Can. J. Chem. 1992, 70, 612 – 630.en_US
dc.identifier.citedreferenceA. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378 – 6396.en_US
dc.identifier.citedreferenceWe were unable to optimize a unique transition state corresponding to C(sp 3 )F coupling from 8 ‐I. All attempts resulted in the same transition state structure found for 8.en_US
dc.identifier.citedreferenceCCDC 852596 ( 4 ) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.en_US
dc.identifier.citedreferenceFor reviews, see:en_US
dc.identifier.citedreferenceK. M. Engle, T. S. Mei, X. Wang, J. Q. Yu, Angew. Chem. 2011, 123, 1514 – 1528; Angew. Chem. Int. Ed. 2011, 50, 1478 – 1491;en_US
dc.identifier.citedreferenceT. Furuya, A. S. Kamlet, T. Ritter, Nature 2011, 473, 470 – 477;en_US
dc.identifier.citedreferenceV. V. Grushin, Acc. Chem. Res. 2010, 43, 160 – 171;en_US
dc.identifier.citedreferenceA. Vigalok, A. W. Kaspi, Top. Organomet. Chem. 2010, 31, 19 – 38.en_US
dc.identifier.citedreferenceFor Pd 0/II catalysis for C(sp 2 )F and allylic C(sp 3 )F bond formation, see:en_US
dc.identifier.citedreferenceT. J. Maimone, P. J. Milner, T. Kinzel, Y. Zhang, M. K. Takase, S. N. Buchwald, J. Am. Chem. Soc. 2011, 133, 18106 – 18109;en_US
dc.identifier.citedreferenceM. H. Katcher, A. Sha, A. G. Doyle, J. Am. Chem. Soc. 2011, 133, 15902 – 15905;en_US
dc.identifier.citedreferenceT. Noël, T. J. Maimone, S. L. Buchwald, Angew. Chem. 2011, 123, 9062 – 9065; Angew. Chem. Int. Ed. 2011, 50, 8900 – 8903;en_US
dc.identifier.citedreferenceC. Hollingworth, A. Hazari, M. N. Hopkinson, M. Tredwell, E. Benedetto, M. Huiban, A. D. Gee, J. M. Brown, V. Gouverneur, Angew. Chem. 2011, 123, 2661 – 2665; Angew. Chem. Int. Ed. 2011, 50, 2613 – 2617;en_US
dc.identifier.citedreferenceM. H. Katcher, A. G. Doyle, J. Am. Chem. Soc. 2010, 132, 17402 – 17404;en_US
dc.identifier.citedreferenceD. A. Watson, M. Su, G. Teverovskiy, Y. Zhang, J. Garcia‐Fortanet, T. Kinzel, S. L. Buchwald, Science 2009, 325, 1661 – 1664.en_US
dc.identifier.citedreferenceFor other recent examples of metal‐catalyzed fluorination reactions, see:en_US
dc.identifier.citedreferenceT. Xu, X. Mu, H. Peng, G. Liu, Angew. Chem. 2011, 123, 8326 – 8329; Angew. Chem. Int. Ed. 2011, 50, 8176 – 8179;en_US
dc.identifier.citedreferenceP. Tang, T. Furuya, T. Ritter, J. Am. Chem. Soc. 2010, 132, 12150 – 12154;en_US
dc.identifier.citedreferenceJ. A. Kalow, A. G. Doyle, J. Am. Chem. Soc. 2010, 132, 3268 – 3269;en_US
dc.identifier.citedreferencefor a review on Au‐catalyzed fluorination reactions, see: M. N. Hopkinson, A. G. Gee, V. Gouverneur, Isr. J. Chem. 2010, 50, 675 – 690.en_US
dc.identifier.citedreferenceFor Pd‐catalyzed CH fluorination with F + reagents, see:en_US
dc.identifier.citedreferenceK. S. L. Chan, M. Wasa, X. Wang, J. Q. Yu, Angew. Chem. 2011, 123, 9247 – 9250; Angew. Chem. Int. Ed. 2011, 50, 9081 – 9084;en_US
dc.identifier.citedreferenceX. Wang, T. S. Mei, J. Q. Yu, J. Am. Chem. Soc. 2009, 131, 7520 – 7521;en_US
dc.identifier.citedreferenceK. L. Hull, W. Q. Anani, M. S. Sanford, J. Am. Chem. Soc. 2006, 128, 7134 – 7135.en_US
dc.identifier.citedreferenceFor Pd‐catalyzed olefin aminofluorination with F + reagents, see: T. Wu, G. Yin, G. Liu, J. Am. Chem. Soc. 2009, 131, 16354 – 16355.en_US
dc.identifier.citedreferenceFor stoichiometric arylF coupling from Pd II /F +, see: T. Furuya, T. Ritter, Angew. Chem. 2008, 120, 6082 – 6085; Angew. Chem. Int. Ed. 2008, 47, 5993 – 5996.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceT. Furuya, D. Benitez, E. Tkatchouk, A. E. Strom, P. Tang, W. A. Goddard   III, T. Ritter, J. Am. Chem. Soc. 2010, 132, 3793 – 3807;en_US
dc.identifier.citedreferenceN. D. Ball, M. S. Sanford, J. Am. Chem. Soc. 2009, 131, 3796 – 3797.en_US
dc.identifier.citedreferenceA. W. Kaspi, I. Goldberg, A. Vigalok, J. Am. Chem. Soc. 2010, 132, 10626 – 10627.en_US
dc.identifier.citedreferenceS. B. Zhao, J. J. Becker, M. R. Gagne, Organometallics 2011, 30, 3926 – 3929.en_US
dc.identifier.citedreferenceFor a recent example of C(sp 3 )F bond‐forming reductive elimination from in situ generated Au III complexes, see: N. P. Mankad, F. D. Toste, Chem. Sci. 2012, 3, 72 – 76.en_US
dc.identifier.citedreferenceFor the microscopic reverse oxidative addition of C(sp 3 )F bonds, see: J. Choi, D. Y. Wang, S. Kundu, Y. Choliy, T. J. Emge, K. Krough‐Jespersen, A. S. Goldman, Science 2011, 332, 1545 – 1548.en_US
dc.identifier.citedreferenceJ. Cámpora, J. A. López, P. Palma, D. del Rio, E. Carmona, P. Valerga, C. Graiff, A. Tiripicchio, Inorg. Chem. 2001, 40, 4116 – 4126.en_US
dc.identifier.citedreferenceFor use of NFTPT to access high oxidation state Pd complexes, see:en_US
dc.identifier.citedreferenceJ. M. Racowski, N. D. Ball, M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 18022 – 18025;en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.