Show simple item record

Chemical transfection of dye‐conjugated microRNA precursors for microRNA functional analysis of M2 macrophages

dc.contributor.authorNg, Yee Sengen_US
dc.contributor.authorRoca, Hernanen_US
dc.contributor.authorFuller, Daviden_US
dc.contributor.authorSud, Sudhaen_US
dc.contributor.authorPienta, Kenneth J.en_US
dc.date.accessioned2012-04-04T18:42:25Z
dc.date.available2013-06-11T19:15:41Zen_US
dc.date.issued2012-05en_US
dc.identifier.citationNg, Yee Seng; Roca, Hernan; Fuller, David; Sud, Sudha; Pienta, Kenneth J. (2012). "Chemical transfection of dye‐conjugated microRNA precursors for microRNA functional analysis of M2 macrophages ." Journal of Cellular Biochemistry 113(5): 1714-1723. <http://hdl.handle.net/2027.42/90531>en_US
dc.identifier.issn0730-2312en_US
dc.identifier.issn1097-4644en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90531
dc.description.abstractMicroRNAs (miRNAs) are short noncoding ribonucleic acids known to affect gene expression at the translational level and there is mounting evidence that miRNAs play a role in the function of tumor‐associated macrophages (TAMs). To aid the functional analyses of miRNAs in an in‐vitro model of TAMs known as M2 macrophages, a transfection method to introduce artificial miRNA constructs or miRNA molecules into primary human monocytes is needed. Unlike differentiated macrophages or dendritic cells, undifferentiated primary human monocytes have been known to show resistance to lentiviral transduction. To circumvent this challenge, other techniques such as electroporation and chemical transfection have been used in other applications to deliver small gene constructs into human monocytes. To date, no studies have compared these two methods objectively to evaluate their suitability in the miRNA functional analysis of M2 macrophages. Of the methods tested, the electroporation of miRNA‐construct containing plasmids and the chemical transfection of miRNA precursor molecules are the most efficient approaches. The use of a silencer siRNA labeling kit (Ambion) to conjugate Cy 3 fluorescence dyes to the precursor molecules allowed the isolation of successfully transfected cells with fluorescence‐activated cell sorting. The chemical transfection of these dye‐conjugated miRNA precursors yield an efficiency of 37.5 ± 0.6% and a cell viability of 74 ± 1%. RNA purified from the isolated cells demonstrated good quality, and was fit for subsequent mRNA expression qPCR analysis. While electroporation of plasmids containing miRNA constructs yield transfection efficiencies comparable to chemical transfection of miRNA precursors, these electroporated primary monocytes seemed to have lost their potential for differentiation. Among the most common methods of transfection, the chemical transfection of dye‐conjugated miRNA precursors was determined to be the best‐suited approach for the functional analysis of M2 macrophages. J. Cell. Biochem. 113: 1714–1723, 2012. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherTUMOR‐ASSOCIATED MACROPHAGESen_US
dc.subject.otherMiR‐511en_US
dc.subject.otherMiRNAen_US
dc.subject.otherMicroRNAen_US
dc.subject.otherELECTROPORATIONen_US
dc.subject.otherCHEMICAL TRANSFECTIONen_US
dc.titleChemical transfection of dye‐conjugated microRNA precursors for microRNA functional analysis of M2 macrophagesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Internal Medicine, University of Michigan, Comprehensive Cancer Center ‐ Room 7308, 1500 East Medical Center Drive, Ann Arbor, MI 48109‐5946.en_US
dc.contributor.affiliationumDepartment of Internal Medicine, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Urology, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumUniversity of Michigan Comprehensive Cancer Center, Ann Arbor, Michiganen_US
dc.identifier.pmid22213010en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90531/1/24041_ftp.pdf
dc.identifier.doi10.1002/jcb.24041en_US
dc.identifier.sourceJournal of Cellular Biochemistryen_US
dc.identifier.citedreferencePonsaerts P, Van den Bosch G, Cools N, Van Driessche A, Nijs G, Lenjou M, Lardon F, Van Broeckhoven C, Van Bockstaele DR, Berneman ZN, Van Tendeloo VF. 2002. Messenger RNA electroporation of human monocytes, followed by rapid in vitro differentiation, leads to highly stimulatory antigen‐loaded mature dendritic cells. J Immunol 169: 1669 – 1675.en_US
dc.identifier.citedreferenceClement‐Ziza M, Gentien D, Lyonnet S, Thiery JP, Besmond C, Decraene C. 2009. Evaluation of methods for amplification of picogram amounts of total RNA for whole genome expression profiling. BMC Genom 10: 246.en_US
dc.identifier.citedreferenceDai R, Ahmed SA. 2011. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res 157: 163 – 179.en_US
dc.identifier.citedreferenceDong C, Kwas C, Wu L. 2009. Transcriptional restriction of human immunodeficiency virus type 1 gene expression in undifferentiated primary monocytes. J Virol 83: 3518 – 3527.en_US
dc.identifier.citedreferenceGazi U, Martinez‐Pomares L. 2009. Influence of the mannose receptor in host immune responses. Immunobiology 214: 554 – 561.en_US
dc.identifier.citedreferenceHe M, Xu Z, Ding T, Kuang DM, Zheng L. 2009. MicroRNA‐155 regulates inflammatory cytokine production in tumor‐associated macrophages via targeting C/EBPbeta. Cell Mol Immunol 6: 343 – 352.en_US
dc.identifier.citedreferenceLandi A, Babiuk LA, van Drunen Littel‐van den Hurk S. 2007. High transfection efficiency, gene expression, and viability of monocyte‐derived human dendritic cells after nonviral gene transfer. J Leukoc Biol 82: 849 – 860.en_US
dc.identifier.citedreferenceLenz P, Bacot SM, Frazier‐Jessen MR, Feldman GM. 2003. Nucleoporation of dendritic cells: Efficient gene transfer by electroporation into human monocyte‐derived dendritic cells. FEBS Lett 538: 149 – 154.en_US
dc.identifier.citedreferenceLeyva FJ, Anzinger JJ, McCoy JP Jr, Kruth HS. 2011. Evaluation of transduction efficiency in macrophage colony‐stimulating factor differentiated human macrophages using HIV‐1 based lentiviral vectors. BMC Biotechnol 11: 13.en_US
dc.identifier.citedreferenceLim LP, Lau NC, Garrett‐Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. 2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769 – 773.en_US
dc.identifier.citedreferenceLiu J, Zhang N, Li Q, Zhang W, Ke F, Leng Q, Wang H, Chen J. 2011. Tumor‐associated macrophages recruit CCR6+ regulatory T cells and promote the development of colorectal cancer via enhancing CCL20 production in mice. PLoS One 6: e19495.en_US
dc.identifier.citedreferenceMantovani A, Sozzani S, Locati M, Allavena P, Sica A. 2002. Macrophage polarization: Tumor‐associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23: 549 – 555.en_US
dc.identifier.citedreferenceMartinez FO, Gordon S, Locati M, Mantovani A. 2006. Transcriptional profiling of the human monocyte‐to‐macrophage differentiation and polarization: New molecules and patterns of gene expression. J Immunol 177: 7303 – 7311.en_US
dc.identifier.citedreferenceMartinez‐Nunez RT, Louafi F, Friedmann PS, Sanchez‐Elsner T. 2009. MicroRNA‐155 modulates the pathogen binding ability of dendritic cells (DCs) by down‐regulation of DC‐specific intercellular adhesion molecule‐3 grabbing non‐integrin (DC‐SIGN). J Biol Chem 284: 16334 – 16342.en_US
dc.identifier.citedreferenceMartinez‐Nunez RT, Louafi F, Sanchez‐Elsner T. 2011. The interleukin 13 (IL‐13) pathway in human macrophages is modulated by microRNA‐155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem 286: 1786 – 1794.en_US
dc.identifier.citedreferenceMuhlebach MD, Wolfrum N, Schule S, Tschulena U, Sanzenbacher R, Flory E, Cichutek K, Schweizer M. 2005. Stable transduction of primary human monocytes by simian lentiviral vector PBj. Mol Ther 12: 1206 – 1216.en_US
dc.identifier.citedreferenceMuruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, Parks RJ, Tschopp J. 2008. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452: 103 – 107.en_US
dc.identifier.citedreferenceNeil S, Martin F, Ikeda Y, Collins M. 2001. Postentry restriction to human immunodeficiency virus‐based vector transduction in human monocytes. J Virol 75: 5448 – 5456.en_US
dc.identifier.citedreferencePrechtel AT, Turza NM, Theodoridis AA, Kummer M, Steinkasserer A. 2006. Small interfering RNA (siRNA) delivery into monocyte‐derived dendritic cells by electroporation. J Immunol Methods 311: 139 – 152.en_US
dc.identifier.citedreferencePuig‐Kroger A, Sierra‐Filardi E, Dominguez‐Soto A, Samaniego R, Corcuera MT, Gomez‐Aguado F, Ratnam M, Sanchez‐Mateos P, Corbi AL. 2009. Folate receptor beta is expressed by tumor‐associated macrophages and constitutes a marker for M2 anti‐inflammatory/regulatory macrophages. Cancer Res 69: 9395 – 9403.en_US
dc.identifier.citedreferenceSquadrito ML, De Palma M. 2011. Macrophage regulation of tumor angiogenesis: Implications for cancer therapy. Mol Aspects Med 32: 123 – 145.en_US
dc.identifier.citedreferenceTjiu JW, Chen JS, Shun CT, Lin SJ, Liao YH, Chu CY, Tsai TF, Chiu HC, Dai YS, Inoue H, Yang PC, Kuo ML, Jee SH. 2009. Tumor‐associated macrophage‐induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase‐2 induction. J Invest Dermatol 129: 1016 – 1025.en_US
dc.identifier.citedreferenceTriques K, Stevenson M. 2004. Characterization of restrictions to human immunodeficiency virus type 1 infection of monocytes. J Virol 78: 5523 – 5527.en_US
dc.identifier.citedreferenceVeale KJ, Offenhauser C, Lei N, Stanley AC, Stow JL, Murray RZ. 2011. VAMP3 regulates podosome organisation in macrophages and together with Stx4/SNAP23 mediates adhesion, cell spreading and persistent migration. Exp Cell Res 317: 1817 – 1829.en_US
dc.identifier.citedreferenceVerreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, Kastelein R, Kolk A, de Waal‐Malefyt R, Ottenhoff TH. 2004. Human IL‐23‐producing type 1 macrophages promote but IL‐10‐producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci USA 101: 4560 – 4565.en_US
dc.identifier.citedreferenceWang R, Zhang J, Chen S, Lu M, Luo X, Yao S, Liu S, Qin Y, Chen H. 2011. Tumor‐associated macrophages provide a suitable microenvironment for non‐small lung cancer invasion and progression. Lung Cancer. 72: 188 – 196.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.