Show simple item record

Cyanobacterial life at low O 2 : community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat

dc.contributor.authorVoorhies, A. A.en_US
dc.contributor.authorBiddanda, B. A.en_US
dc.contributor.authorKendall, S. T.en_US
dc.contributor.authorJain, S.en_US
dc.contributor.authorMarcus, D. N.en_US
dc.contributor.authorNold, S. C.en_US
dc.contributor.authorSheldon, Nathan D.en_US
dc.contributor.authorDick, G. J.en_US
dc.date.accessioned2012-04-04T18:42:31Z
dc.date.available2013-06-11T19:15:41Zen_US
dc.date.issued2012-05en_US
dc.identifier.citationVoorhies, A. A. ; Biddanda, B. A. ; Kendall, S. T. ; Jain, S. ; Marcus, D. N. ; Nold, S. C. ; Sheldon, N. D. ; Dick, G. J. (2012). "Cyanobacterial life at low O 2 : community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat." Geobiology 10(3). <http://hdl.handle.net/2027.42/90535>en_US
dc.identifier.issn1472-4677en_US
dc.identifier.issn1472-4669en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90535
dc.description.abstractCyanobacteria are renowned as the mediators of Earth’s oxygenation. However, little is known about the cyanobacterial communities that flourished under the low‐O 2 conditions that characterized most of their evolutionary history. Microbial mats in the submerged Middle Island Sinkhole of Lake Huron provide opportunities to investigate cyanobacteria under such persistent low‐O 2 conditions. Here, venting groundwater rich in sulfate and low in O 2 supports a unique benthic ecosystem of purple‐colored cyanobacterial mats. Beneath the mat is a layer of carbonate that is enriched in calcite and to a lesser extent dolomite. In situ benthic metabolism chambers revealed that the mats are net sinks for O 2 , suggesting primary production mechanisms other than oxygenic photosynthesis. Indeed, 14 C‐bicarbonate uptake studies of autotrophic production show variable contributions from oxygenic and anoxygenic photosynthesis and chemosynthesis, presumably because of supply of sulfide. These results suggest the presence of either facultatively anoxygenic cyanobacteria or a mix of oxygenic/anoxygenic types of cyanobacteria. Shotgun metagenomic sequencing revealed a remarkably low‐diversity mat community dominated by just one genotype most closely related to the cyanobacterium Phormidium autumnale , for which an essentially complete genome was reconstructed. Also recovered were partial genomes from a second genotype of Phormidium and several Oscillatoria . Despite the taxonomic simplicity, diverse cyanobacterial genes putatively involved in sulfur oxidation were identified, suggesting a diversity of sulfide physiologies. The dominant Phormidium genome reflects versatile metabolism and physiology that is specialized for a communal lifestyle under fluctuating redox conditions and light availability. Overall, this study provides genomic and physiologic insights into low‐O 2 cyanobacterial mat ecosystems that played crucial geobiological roles over long stretches of Earth history.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleCyanobacterial life at low O 2 : community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole maten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumCenter for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDeptartment of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherBiology Department, University of Wisconsin‐Stout, Menomonie, WI, USAen_US
dc.contributor.affiliationotherAnnis Water Resources Institute, Grand Valley State University, Muskegon, MI, USAen_US
dc.identifier.pmid22404795en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90535/1/j.1472-4669.2012.00322.x.pdf
dc.identifier.doi10.1111/j.1472-4669.2012.00322.xen_US
dc.identifier.sourceGeobiologyen_US
dc.identifier.citedreferenceRiding R ( 2011 ) Calcified cyanobacteria. In Encyclopedia of Geobiology (eds Reitner J, Thiel V ). Springer, Heidelberg, pp. 211 – 223.en_US
dc.identifier.citedreferenceRuberg SA, Kendall ST, Biddanda BA, Black T, Nold SC, Lusardi WR, Green R, Casserley T, Smith E, Sanders TG, Lang GA, Constant SA ( 2008 ) Observations of the Middle Island Sinkhole in Lake Huron – a unique hydrogeologic and glacial creation of 400 million years. Marine Technology Society Journal 42, 12 – 21.en_US
dc.identifier.citedreferenceRye R, Holland HD ( 2000 ) Life associated with a 2.76 Ga ephemeral pond?: evidence from Mount Roe #2 paleosol. Geology, 28, 483 – 486.en_US
dc.identifier.citedreferenceSanders JTG, Biddanda BA, Stricker CA, Nold SC ( 2011 ) Stable isotope analysis reveals benthic macroinvertebrate and fish communities linked to submerged groundwater vents in Lake Huron. Aquatic Biology 12, 1 – 11.en_US
dc.identifier.citedreferenceSchidlowski M ( 2000 ) Carbon isotopes and microbial sediments. In Microbial Sediments (eds Riding RE, Awramik SM ). Springer‐Verlag, Berlin, pp. 84 – 95.en_US
dc.identifier.citedreferenceSchütz M, Shahak Y, Padan E, Hauska G ( 1997 ) Sulfide‐quinone reductase from Rhodobacter capsulatus. Purification, cloning, and expression. Journal of Biological Chemistry 272, 9890 – 9894.en_US
dc.identifier.citedreferenceSheldon N (in press) Microbially induced sedimentary structures in the ca. 1100 Ma terrestrial Midcontinental Rift of North America. In Microbial Mats in Siliciclastic Depositional Systems Through Time (eds Noffke N, Chafetz H ). SEPM Special Publication No. 11. (ISBN: 978‐1‐56576‐314‐2).en_US
dc.identifier.citedreferenceShen Y, Knoll AH, Walter MR ( 2003 ) Evidence for low sulphate and anoxia in a mid‐Proterozoic marine basin. Nature 423, 632 – 635.en_US
dc.identifier.citedreferenceStal LJ ( 1995 ) Tansley Review No. 84. Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytologist 131, 1 – 32.en_US
dc.identifier.citedreferenceStal LJ ( 2000 ) Cyanobacterial mats and stromatolites. In The Ecology of Cyanobacteria (eds Whitton B, Potts M ). Kluwer Academic Publishers, Dordrecht/London/Boston, pp. 61 – 120.en_US
dc.identifier.citedreferenceStal LJ, Moezelaar R ( 1997 ) Fermentation in cyanobacteria. FEMS Microbiology Reviews 21, 179 – 211.en_US
dc.identifier.citedreferenceStamatakis A ( 2006 ) RAxML‐VI‐HPC: maximum likelihood‐based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688 – 2690.en_US
dc.identifier.citedreferenceStrunecký O, Elster J, Komárek J ( 2010 ) Phylogenetic relationships between geographically separate Phormidium cyanobacteria: is there a link between north and south polar regions? Polar Biology 33, 1419 – 1428.en_US
dc.identifier.citedreferenceSummons RE, Jahnke LL, Hope JM, Logan GA ( 1999 ) 2‐Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554 – 557.en_US
dc.identifier.citedreferenceTamura K, Dudley J, Nei M, Kumar S ( 2007 ) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596 – 1599.en_US
dc.identifier.citedreferenceTaton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn‐Parry J, Wilmotte A ( 2006a ) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiology Ecology 57, 272 – 289.en_US
dc.identifier.citedreferenceTaton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R, Biondi N, Tredici MR, Mainini M, Losi D, Marinelli F, Wilmotte A ( 2006b ) Polyphasic study of Antarctic cyanobacterial strains. Journal of Phycology 42, 1257 – 1270.en_US
dc.identifier.citedreferenceVan Lith Y, Warthmann R, Vasconcelos C, Mckenzie JA ( 2003 ) Sulphate‐reducing bacteria induce low‐temperature Ca‐dolomite and high Mg‐calcite formation. Geobiology 1, 71 – 79.en_US
dc.identifier.citedreferenceVasconcelos C, Mckenzie JA, Bernasconi S, Grujic D, Tien AJ ( 1995 ) Microbial mediation as a possible mechanism for natural dolomite formation at low‐temperatures. Nature 377, 220 – 222.en_US
dc.identifier.citedreferenceVincent WF ( 2000 ) Cyanobacterial dominance in the polar regions. In The Ecology of Cyanobacteria (eds Whitton BA, Potts M ). Kluver Academic Publishers, Amsterdam, 321 – 340.en_US
dc.identifier.citedreferenceWalter MR, Bauld J ( 1983 ) The association of sulphate evaporites, stromatolitic carbonates and glacial sediments: examples from the Proterozoic of Australia and the Cainzoic of Antarctica. Precambrian Research 21, 129 – 148.en_US
dc.identifier.citedreferenceWalter LM, Ku TCW, Muehlenbacks K, Patterson WP, Bonnell L ( 2007 ) Controls on δ13C of dissolved inorganic carbon in marine pore waters: an integrated case study of isotope exchange during syndepositional recrystallization of biogenic carbonate sediments (South Florida Platform, USA). Deep Sea Research Part II: Topical Studies in Oceanography 54, 1163 – 1200.en_US
dc.identifier.citedreferenceWang Y, Kern SE, Newman DK ( 2010 ) Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. Journal of Bacteriology 192, 365 – 369.en_US
dc.identifier.citedreferenceWarthmann R, Van Lith Y, Vasconcelos C, Mckenzie JA, Karpoff AM ( 2000 ) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28, 1091 – 1094.en_US
dc.identifier.citedreferenceWelander PV, Hunter RC, Zhang L, Sessions AL, Summons RE, Newman DK ( 2009 ) Hopanoids play a role in membrane integrity and pH homeostasis in Rhodopseudomonas palustris TIE‐1. Journal of Bacteriology 191, 6145 – 6156.en_US
dc.identifier.citedreferenceWelander PV, Coleman ML, Sessions AL, Summons RE, Newman DK ( 2010 ) Identification of a methylase required for 2‐methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proceedings of the National Academy of Sciences of the United States of America 107, 8537 – 8542.en_US
dc.identifier.citedreferenceWharton RA, Parker BC, Simmons GM ( 1983 ) Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes. Phycologia 22, 355 – 365.en_US
dc.identifier.citedreferenceWittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N ( 2009 ) Initial community evenness favours functionality under selective stress. Nature 458, 623 – 626.en_US
dc.identifier.citedreferenceAndersen DT, Sumner DY, Hawes I, Webster‐Brown J, Mckay CP ( 2011 ) Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9, 280 – 293.en_US
dc.identifier.citedreferenceArieli B, Shahak Y, Taglicht D, Hauska G, Padan E ( 1994 ) Purification and characterization of sulfide‐quinone reductase, a novel enzyme driving anoxygenic photosynthesis in Oscillatoria limnetica. Journal of Biological Chemistry 269, 5705 – 5711.en_US
dc.identifier.citedreferenceBachar A, Omoregie E, De Wit R, Jonkers HM ( 2007 ) Diversity and function of Chloroflexus‐like bacteria in a hypersaline microbial mat: phylogenetic characterization and impact on aerobic respiration. Applied and Environment Microbiology 73, 3975 – 3983.en_US
dc.identifier.citedreferenceBekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ ( 2004 ) Dating the rise of atmospheric oxygen. Nature 427, 117 – 120.en_US
dc.identifier.citedreferenceBelkin S, Padan E ( 1978 ) Hydrogen metabolism in the facultative anoxygenic Cyanobacteria (Blue‐Green Algae) Oscillatoria limnetica and Aphanothece halophytica. Archives of Microbiology 116, 109 – 111.en_US
dc.identifier.citedreferenceBertrand EM, Saito MA, Rose JM, Riesselman CR, Lohan MC, Noble AE, Lee PA, Ditullio GR ( 2007 ) Vitamin B‐12 and iron colimitation of phytoplankton growth in the Ross Sea. Limnology and Oceanography 52, 1079 – 1093.en_US
dc.identifier.citedreferenceBiddanda BA, Opsahl S, Benner R ( 1994 ) Plankton respiration and carbon flux through bacterioplankton on the Louisiana Shelf. Limnology and Oceanography 39, 1259 – 1275.en_US
dc.identifier.citedreferenceBiddanda BA, Coleman DF, Johengen TH, Ruberg SA, Meadows GA, Vansumeran HW, Rediske RR, Kendall ST ( 2006 ) Exploration of a submerged sinkhole ecosystem in Lake Huron. Ecosystems 9, 828 – 842.en_US
dc.identifier.citedreferenceBiddanda BA, Nold SC, Ruberg SA, Kendall ST, Sanders TG, Gray JJ ( 2009 ) Great Lakes sinkholes: a microbiogeochemical frontier. Eos, Transactions, American Geophysical Union 90, 61 – 62.en_US
dc.identifier.citedreferenceBiddanda BA, Nold SC, Dick GJ, Kendall ST, Vail JH, Ruberg SA, Green CM (in press) Rock, water, microbes: underwater sinkholes in Lake Huron are habitats for ancient microbial life. Nature Education.en_US
dc.identifier.citedreferenceBlack TJ ( 1983 ) Selected views of the tectonics, structure and karst in northern lower Michigan. In Michigan Basin Geological Society Field Conference Proceedings (ed. Kimmel RE ). Michigan Basin Geological Society, Lansing, MI, pp. 11 – 35.en_US
dc.identifier.citedreferenceBlankenship R, Sadekar S, Raymond J ( 2007 ) The evolutionary transition from anoxygenic to oxygenic photosynthesis. In Evolution of Primary Producers in the Sea (eds Falkowski PG, Knoll AH ). Elsevier, Philadelphia, PA, pp. 21 – 35.en_US
dc.identifier.citedreferenceBlenkinsopp SA, Costerton JW ( 1991 ) Understanding bacterial biofilms. Trends in Biotechnology 9, 138 – 143.en_US
dc.identifier.citedreferenceBosak T, Newman DK ( 2003 ) Microbial nucleation of calcium carbonate in the Precambrian. Geology 31, 577 – 580.en_US
dc.identifier.citedreferenceBronstein M, Schutz M, Hauska G, Padan E, Shahak Y ( 2000 ) Cyanobacterial sulfide‐quinone reductase: cloning and heterologous expression. Journal of Bacteriology 182, 3336 – 3344.en_US
dc.identifier.citedreferenceBühring SI, Sievert SM, Jonkers HM, Ertefai T, Elshahed MS, Krumholz LR, Hinrichs KU ( 2011 ) Insights into chemotaxonomic composition and carbon cycling of phototrophic communities in an artesian sulfur‐rich spring (Zodletone, Oklahoma, USA), a possible analog for ancient microbial mat systems. Geobiology 9, 166 – 179.en_US
dc.identifier.citedreferenceCanfield DE, Des Marais DJ ( 1993 ) Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim Cosmochim Acta 57, 3971 – 3984.en_US
dc.identifier.citedreferenceCasamayor EO, Garcia‐Cantizano J, Pedros‐Alio C ( 2008 ) Carbon dioxide fixation in the dark by photosynthetic bacteria in sulfide‐rich stratified lakes with oxic‐anoxic interfaces. Limnology and Oceanography 53, 1193 – 1203.en_US
dc.identifier.citedreferenceCastenholz RW ( 1976 ) Effect of sulfide on blue‐green algae of hot springs.1. New‐Zealand. Journal of Phycology 12, 54 – 68.en_US
dc.identifier.citedreferenceCastenholz RW ( 1977 ) Effect of sulfide on blue‐green algae of hot springs.2. Yellowstone National Park. Microbial Ecology 3, 79 – 105.en_US
dc.identifier.citedreferenceChevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WEG, Wetter T, Suhai S ( 2004 ) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Research 14, 1147 – 1159.en_US
dc.identifier.citedreferenceChivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, Desantis TZ, Gihring TM, Lapidus A, Lin LH, Lowry SR, Moser DP, Richardson PM, Southam G, Wanger G, Pratt LM, Andersen GL, Hazen TC, Brockman FJ, Arkin AP, Onstott TC ( 2008 ) Environmental genomics reveals a single‐species ecosystem deep within Earth. Science 322, 275 – 278.en_US
dc.identifier.citedreferenceCohen Y, Jorgensen BB, Padan E, Shilo M ( 1975a ) Sulphide‐dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257, 489 – 492.en_US
dc.identifier.citedreferenceCohen Y, Padan E, Shilo M ( 1975b ) Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Journal of Bacteriology 123, 855 – 861.en_US
dc.identifier.citedreferenceCohen Y, Jorgensen BB, Revsbech NP, Poplawski R ( 1986 ) Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Applied and Environment Microbiology 51, 398 – 407.en_US
dc.identifier.citedreferenceComte K, Sabacka M, Carre‐Mlouka A, Elster J, Komarek J ( 2007 ) Relationships between the Arctic and the Antarctic cyanobacteria; three Phormidium ‐like strains evaluated by a polyphasic approach. FEMS Microbiology Ecology 59, 366 – 376.en_US
dc.identifier.citedreferenceCowan DA, Tow LA ( 2004 ) Endangered antarctic environments. Annual Review of Microbiology 58, 649 – 690.en_US
dc.identifier.citedreferenceDenef VJ, Mueller RS, Banfield JF ( 2010 ) AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. Isme Journal 4, 599 – 610.en_US
dc.identifier.citedreferenceDeruyter YS, Fromme P ( 2008 ) Molecular structure of the photosynthetic apparatus. In The Cyanobacteria, Molecular Biology, Genomics, and Evolution (eds Herrero A, Flores E ). Caister Academic Press, Norfolk, UK, pp. 217 – 269.en_US
dc.identifier.citedreferenceDick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, Yelton AP, Banfield JF ( 2009 ) Community‐wide analysis of microbial genome sequence signatures. Genome Biology 10, R85.en_US
dc.identifier.citedreferenceDietrich LEP, Teal TK, Price‐Whelan A, Newman DK ( 2008 ) Redox‐active antibiotics control gene expression and community behavior in divergent bacteria. Science 321, 1203 – 1206.en_US
dc.identifier.citedreferenceDupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT ( 2009 ) Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews 96, 141 – 162.en_US
dc.identifier.citedreferenceFalkowski PG, Fenchel T, Delong EF ( 2008 ) The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034 – 1039.en_US
dc.identifier.citedreferenceFontes MLS, Suzuki MT, Cottrell MT, Abreu PC ( 2011 ) Primary production in a subtropical stratified coastal lagoon‐contribution of anoxygenic phototrophic bacteria. Microbial Ecology 61, 223 – 237.en_US
dc.identifier.citedreferenceFriedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J ( 2005 ) Prokaryotic sulfur oxidation. Current Opinion in Microbiology 8, 253 – 259.en_US
dc.identifier.citedreferenceFrigaard N‐U, Dahl C, Robert KP ( 2008 ) Sulfur metabolism in phototrophic sulfur bacteria. In Advances in Microbial Physiology (ed Robert KP ). Academic Press, London, UK, pp. 103 – 200.en_US
dc.identifier.citedreferenceGarlick S, Oren A, Padan E ( 1977 ) Occurrence of facultative anoxygenic photosynthesis among filamentous and unicellular cyanobacteria. Journal of Bacteriology 129, 623 – 629.en_US
dc.identifier.citedreferenceGingras M, Hagadorn JW, Seilacher A, Lalonde SV, Pecoits E, Petrash D, Konhauser KO ( 2011 ) Possible evolution of mobile animals in association with microbial mats. Nature Geoscience 4, 372 – 375.en_US
dc.identifier.citedreferenceGrotzinger JP, Knoll AH ( 1999 ) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences 27, 313 – 358.en_US
dc.identifier.citedreferenceHawes I, Schwarz AM ( 1999 ) Photosynthesis in an extreme shade environment: benthic microbial mats from Lake Hoare, a permanently ice‐covered Antarctic lake. Journal of Phycology 35, 448 – 459.en_US
dc.identifier.citedreferenceHe Y‐Y, Hader D‐P ( 2002 ) Reactive oxygen species and UV‐B: effect on cyanobacteria. Photochemical & Photobiological Sciences 1, 729 – 736.en_US
dc.identifier.citedreferenceHolland HD ( 2006 ) The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences 361, 903 – 915.en_US
dc.identifier.citedreferenceHorodyski RJ, Knauth LP ( 1994 ) Life on land in the Precambrian. Science 263, 494 – 498.en_US
dc.identifier.citedreferenceImbus SW, Macko SA, Elmore RD, Engel MH ( 1992 ) Stable isotope (C, S, N) and molecular studies on the Precambrian Nonesuch Shale (Wisconsin‐Michigan, USA) – evidence for differential preservation rates, depositional environment and hydrothermal influence. Chemical Geology 101, 255 – 281.en_US
dc.identifier.citedreferenceJohnston DT, Wolfe‐Simon F, Pearson A, Knoll AH ( 2009 ) Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age. Proceedings of the National Academy of Sciences of the United States of America 106, 16925 – 16929.en_US
dc.identifier.citedreferenceJorgensen BB, Revsbech NP, Blackburn TH, Cohen Y ( 1979 ) Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat sediment. Applied and Environmental Microbiology 38, 46 – 58.en_US
dc.identifier.citedreferenceJorgensen BB, Revsbech NP, Cohen Y ( 1983 ) Photosynthesis and structure of benthic microbial mats – microelectrode and SEM studies of 4 cyanobacterial communities. Limnology and Oceanography 28, 1075 – 1093.en_US
dc.identifier.citedreferenceJorgensen BB, Cohen Y, Revsbech NP ( 1986 ) Transition from anoxygenic to oxygenic photosynthesis in a Microcoleus chthonoplastes cyanobacterial mat. Applied and Environment Microbiology 51, 408 – 417.en_US
dc.identifier.citedreferenceKana BD, Weinstein EA, Avarbock D, Dawes SS, Rubin H, Mizrahi V ( 2001 ) Characterization of the cydAB‐Encoded cytochrome bd oxidase from Mycobacterium smegmatis. Journal of Bacteriology 183, 7076 – 7086.en_US
dc.identifier.citedreferenceKenward PA, Goldstein RH, Gonzalez LA, Roberts JA ( 2009 ) Precipitation of low‐temperature dolomite from an anaerobic microbial consortium: the role of methanogenic Archaea. Geobiology 7, 556 – 565.en_US
dc.identifier.citedreferenceKomarek J, Kling H, Komarkova J ( 2003 ) Filamentous cyanobacteria. In Freshwater Algae of North America: Ecology and Classification (eds Wehr JD, Sheath R ). Elsevier Science, San Diego, CA, USA, pp. 117 – 196.en_US
dc.identifier.citedreferenceKopp RE, Kirschvink JL, Hilburn IA, Nash CZ ( 2005 ) The paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proceedings of the National Academy of Sciences of the United States of America 102, 11131 – 11136.en_US
dc.identifier.citedreferenceLarkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, Mcwilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG ( 2007 ) Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947 – 2948.en_US
dc.identifier.citedreferenceLyons TW, Anbar AD, Severmann S, Scott C, Gill BC ( 2009 ) Tracking euxinia in the ancient ocean: a multiproxy perspective and Proterozoic case study. Annual Review of Earth and Planetary Sciences 37, 507 – 534.en_US
dc.identifier.citedreferenceLudwig KA, Kelley DS, Butterfield DA, Nelson BK, Fru¨h‐Green G ( 2006 ) Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field. Geochimica et Cosmochimica Acta 70, 3625 – 3645.en_US
dc.identifier.citedreferenceMakarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, Van Der Oost J, Koonin EV ( 2011 ) Evolution and classification of the CRISPR‐Cas systems. Nature Reviews Microbiology 9, 467 – 477.en_US
dc.identifier.citedreferenceMejean A, Mazmouz R, Mann S, Calteau A, Medigue C, Ploux O ( 2010 ) The genome sequence of the cyanobacterium Oscillatoria sp. PCC 6506 reveals several gene clusters responsible for the biosynthesis of toxins and secondary metabolites. Journal of Bacteriology 192, 5264 – 5265.en_US
dc.identifier.citedreferenceMiller SR, Bebout BM ( 2004 ) Variation in sulfide tolerance of photosystem II in phylogenetically diverse cyanobacteria from sulfidic habitats. Applied and Environment Microbiology 70, 736 – 744.en_US
dc.identifier.citedreferenceNoffke N ( 2009 ) The criteria for the biogenicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth-Science Reviews 96, 173 – 180.en_US
dc.identifier.citedreferenceNold S, Ward D ( 1996 ) Photosynthate partitioning and fermentation in hot spring microbial mat communities. Applied and Environment Microbiology 62, 4598 – 4607.en_US
dc.identifier.citedreferenceNold SC, Pangborn JB, Zajack HA, Kendall ST, Rediske RR, Biddanda BA ( 2010a ) Benthic bacterial diversity in submerged sinkhole ecosystems. Applied and Environment Microbiology 76, 347 – 351.en_US
dc.identifier.citedreferenceNold SC, Zajack HA, Biddanda BA ( 2010b ) Eukaryal and archaeal diversity in a submerged sinkhole ecosystem influenced by sulfur‐rich, hypoxic groundwater. Journal of Great Lakes Research 36, 366 – 375.en_US
dc.identifier.citedreferenceOren A, Padan E ( 1978 ) Induction of anaerobic, photoautotrophic growth in the cyanobacterium Oscillatoria limnetica. Journal of Bacteriology 133, 558 – 563.en_US
dc.identifier.citedreferenceOren A, Shilo M ( 1979 ) Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: sulfur respiration and lactate fermentation. Archives of Microbiology 122, 77 – 84.en_US
dc.identifier.citedreferenceOren A, Padan E, Avron M ( 1977 ) Quantum yields for oxygenic and anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Proceedings of the National Academy of Sciences of the United States of America 74, 2152 – 2156.en_US
dc.identifier.citedreferenceOvermann J, Beatty JT, Hall KJ, Pfennig N, Northcote TG ( 1991 ) Characterization of a dense, purple sulfur bacterial layer in a meromictic Salt Lake. Limnology and Oceanography 36, 846 – 859.en_US
dc.identifier.citedreferencePavlov AA, Kasting JF, Eigenbrode JL, Freeman KH ( 2001 ) Organic haze in Earth’s early atmosphere: source of low‐13C late Archean kerogens? Geology 29, 1003 – 1006.en_US
dc.identifier.citedreferencePalinska K, Marquardt J ( 2007 ) Genotypic and phenotypic analysis of strains assigned to the widespread cyanobacterial morphospecies Phormidium autumnale (Oscillatoriales). Archives of Microbiology 189, 325 – 335.en_US
dc.identifier.citedreferencePedros‐Alio C, Garcia‐Cantizano J, Calderon J ( 1993 ) Bacterial production in anaerobic water columns. In Handbook of Methods in Aquatic Microbial Ecology (eds Kemp P, Sherr B, Sherr B, Cole J ). Lewis Publishers, Boca Raton, FL, pp. 519 – 530.en_US
dc.identifier.citedreferenceRaes J, Korbel JO, Lercher MJ, Von Mering C, Bork P ( 2007 ) Prediction of effective genome size in metagenomic samples. Genome Biology 8, R10.en_US
dc.identifier.citedreferenceRashby SE, Sessions AL, Summons RE, Newman DK ( 2007 ) Biosynthesis of 2‐methylbacteriohopanepolyols by an anoxygenic phototroph. Proceedings of the National Academy of Sciences of the United States of America 104, 15099 – 15104.en_US
dc.identifier.citedreferenceRetallack GJ, Mindszenty A ( 1994 ) Well preserved late Precambrian Paleosols from Northwest Scotland. Journal of Sedimentary Research 64, 264 – 281.en_US
dc.identifier.citedreferenceRevsbech NP, Jorgensen BB, Blackburn TH, Cohen Y ( 1983 ) Microelectrode studies of the photosynthesis and O 2, H 2 S, and pH profiles of a microbial mat. Limnology and Oceanography 28, 1062 – 1074.en_US
dc.identifier.citedreferenceRichardson LL, Castenholz RW ( 1987 ) Diel vertical movements of the cyanobacterium Oscillatoria terebriformis in a sulfide‐rich hot spring microbial mat. Applied and Environment Microbiology 53, 2142 – 2150.en_US
dc.identifier.citedreferenceRiding R ( 2006 ) Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic‐Cambrian changes in atmospheric composition. Geobiology 4, 299 – 316.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.