Show simple item record

Dispersal limitation and the assembly of soil Actinobacteria communities in a long‐term chronosequence

dc.contributor.authorEisenlord, Sarah D.en_US
dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorUpchurch, Rima A.en_US
dc.date.accessioned2012-04-04T18:42:34Z
dc.date.available2013-05-01T17:24:43Zen_US
dc.date.issued2012-03en_US
dc.identifier.citationEisenlord, Sarah D.; Zak, Donald R.; Upchurch, Rima A. (2012). "Dispersal limitation and the assembly of soil Actinobacteria communities in a long‐term chronosequence." Ecology and Evolution 2(3). <http://hdl.handle.net/2027.42/90536>en_US
dc.identifier.issn2045-7758en_US
dc.identifier.issn2045-7758en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90536
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.subject.otherMicrobial Biogeographyen_US
dc.subject.otherChronosequenceen_US
dc.subject.otherActinobacteriaen_US
dc.titleDispersal limitation and the assembly of soil Actinobacteria communities in a long‐term chronosequenceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumEcology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109en_US
dc.contributor.affiliationumSchool of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109en_US
dc.identifier.pmid22822433en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90536/1/ECE3_210_sm_suppmat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90536/2/ece3.210.pdf
dc.identifier.doi10.1002/ece3.210en_US
dc.identifier.sourceEcology and Evolutionen_US
dc.identifier.citedreferencePearce, D., P. D. Bridge, K. A. Hughes, B. Sattler, R. Psenner, and N. Russell. 2009. Microorganisms in the atmosphere over Antarctica. FEMS Microb. Ecol. 69: 143 – 157.en_US
dc.identifier.citedreferenceLozupone, C., M. Hamady, and R. Knight. 2006. UniFrac: An online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinform. 7: 371.en_US
dc.identifier.citedreferenceMartiny, J. B. H., B. J. M. Bohannan, J. H. Brown, R. Colwell, J. Fuhrman, et al. 2006. Microbial biogeography: putting microorganisms on the map. Natl. Rev. Microbiol. 4: 102 – 112.en_US
dc.identifier.citedreferenceMartiny, J. B. H., J. A. Eisen, K. Penn, S. D. Allison, and M. C. Honer‐Devine. 2011. Drivers of bacterial B‐diversity depend on spatial scale. Proc. Natl. Acad. Sci. 108: 7850 – 7854.en_US
dc.identifier.citedreferenceOksanen, J., G. Blanchet, R. Kindt, P. Legendre, R.B. O’Hara, G. L. Simpson, P. Solymos, H. H. Stevens, and H. Wagner. 2011. Vegan: community ecology package. R package version 1.17–11. Available at http://CRAN.R‐project.org/package=vegan.en_US
dc.identifier.citedreferencePapke, R. T., and D. M. Ward. 2004. The importance of physical isolation to microbial diversification. FEMS Microb. Ecol. 48: 293 – 303.en_US
dc.identifier.citedreferencePaul, E. A., and F. E. Clark. 1996. Soil microbiology and biochenistry. ( 2nd ed. 130 – 152 ), San Diego, CA, USA: Academic Press, Inc.en_US
dc.identifier.citedreferencePregitzer, K. S., D. R. Zak, A. J. Burton, J. A. Ashby, and N. W. MacDonald. 2004. Chronic nitrate additions dramatically increase the export of carbon and nitrogen from northern hardwood ecosystems. Biogeochemistry 68: 179 – 197.en_US
dc.identifier.citedreferenceRamette, A., and J. M. Tiedje. 2007a. Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proc. Natl. Acad. Sci. 4: 2761 – 2766.en_US
dc.identifier.citedreferenceRamette, A., and J. M. Tiedje. 2007b. Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb. Ecol. 53: 197 – 207.en_US
dc.identifier.citedreferenceR Development Core Team. 2008. R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. ISBN 3‐900051‐07‐0, URL. Available at http://www.R‐progect.org.en_US
dc.identifier.citedreferenceReed, D. D., K. S. Pregitzer, H. O. Liechty, A. J. Burton, and G. D. Mroz. 1994. Productivity and growth efficiency in sugar maple forests. Forest Ecol. Manag. 70: 319 – 327.en_US
dc.identifier.citedreferenceRoberts, M. S., and F. M. Cohan. 1995. Recombination and migration rates in natural populations of Bacillus subtilis and Bacillus mojavensis. Evolution 49: 1081 – 1094.en_US
dc.identifier.citedreferenceSchloss, P. D., B. R. Larget, and J. Handelsman. 2004. Integration of microbial ecology and statistics: a test to compare gene libraries. Appl. Environ. Microbiol. 70: 5485 – 5492. Available at http://www.plantpath.wisc.edu/joh/s‐libshuff.html.en_US
dc.identifier.citedreferenceSchloss, P. D., S. Westcott, T. Rayabin, J. Hall, M. Harmann, E. Hollister, et al. 2009. Introducing mothur: open‐source, platform‐independent, community‐supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537 – 7541.en_US
dc.identifier.citedreferenceThompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position‐specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673 – 4680.en_US
dc.identifier.citedreferenceVan der Gucht, K., K. Cottenie, K. Muylaert, K. Muylaert, N. Vloemans, S. Cousin, et al. 2007. The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proc. Natil. Acad. Sci. 104: 20404 – 20409.en_US
dc.identifier.citedreferenceVentura, M., C. Canchaya, A. Tauch, G. Chandra, F. G. Fitzgerald, K. F. Chater, and D. van Sinderen. 2007. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 71: 495 – 548.en_US
dc.identifier.citedreferenceVincety, T. 1975. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Surv. Rev. (Kingston Road, Tolworth, Surrey) 23: 88 – 93.en_US
dc.identifier.citedreferenceWawrik, B., D. Kutliev, U. A. Abdivasievna, J. J. Kukor, G. J. Zylstra, and L. Kerkhof. 2007. Biogeography of actinomycete communities and type II polyketide synthase genes in soils collected in New Jersey and Central Asia. Appl. Environ. Microbiol. 73: 2982 – 2989.en_US
dc.identifier.citedreferenceWhitaker, R. J., D. W. Grogan, and J. W. Taylor. 2003. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301: 976 – 978.en_US
dc.identifier.citedreferenceBaas Becking, L. G. M. 1934. Geobiologie of inleiding tot de milieukunde. W. P. Van Stockum & Zoon, The Hague, the Netherlands (in Dutch).en_US
dc.identifier.citedreferenceBissett, A., E. Richardson, G. Baker, S. Wakelin, and P. H. Thrall. 2010. Life history determines biogeographical patterns of soil bacterial communities over multiple spatial scales. Mol. Ecol. 69: 134 – 157.en_US
dc.identifier.citedreferenceBlackwood, C. B., A. Oaks, and J. S. Buyer. 2005. Phylum‐ and class‐specific PCR primers for general microbial community analysis. Appl. Environ. Microbiol. 71: 6193 – 6198.en_US
dc.identifier.citedreferenceBray, J. R., and J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 325 – 349.en_US
dc.identifier.citedreferenceBurton, A. J., C. W. Ramm, K. S. Pregitzer, and D. D. Reed. 1991. Use of multivariate methods in forest research site selection. Can. J. Forest Res. 21: 1573 – 1580.en_US
dc.identifier.citedreferenceBurton, A. J., K. S. Pregitzer, and N. W. MacDonald. 1993. Foliar nutrients in sugar maple forests along a regional pollution‐climate gradient. Soil Sci. Soc. Am. 57: 1619 – 1628.en_US
dc.identifier.citedreferenceBurton, A. J., K. S. Pregitzer, J. N. Crawford, G. P. Zogg, and D. R. Zak. 2004. Simulated chronic NO 3 − addition reduces soil respiration in northern hardwood forests. Global Change Biol. 10: 1080 – 1091.en_US
dc.identifier.citedreferenceBååth, E., and T. H. Anderson. 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA‐based techniques. Soil Biol. Biochem. 35: 955 – 963.en_US
dc.identifier.citedreferenceCho, J. C., and J. M. Tiedje. 2000. Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl. Environ. Microbiol. 66: 5448 – 56.en_US
dc.identifier.citedreferenceClark, K. R., and R. N. Gorley. 2006. PRIMER v6: user manual/tutorial. PRIMER‐E Ltd., Plymouth, U.K.en_US
dc.identifier.citedreferenceCole, J. R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J. Farris, A. S. Kulam‐Syed‐Hohideen, D. M. McGarrell, T. Marsh, and G. M. Garrity. 2009. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37 ( Database issue ): D141 – D145; doi: 10.1093/nar/gkn879.en_US
dc.identifier.citedreferenceColwell, R. K. 2009. EstimateS: statistical estimation of species richness and shared species from samples. Version 8.2. User's Guide and application. Available at http://purl.oclc.org/estimate.en_US
dc.identifier.citedreferenceDavis, M. B. 1983. Quaternary history of deciduous forests of eastern North America and Europe. Garden J. 70: 550 – 563.en_US
dc.identifier.citedreferenceDeAngelis, K. M., M. Allgaier, Y. Charvarria, J. L. Fortney, P. Hugenholtz, B. Simmons, et al. 2011. Characterization of trapped lignin‐degrading microbes in tropical forest soil. PLoS One. 6 ( 4 ): e19306, doi: 10.1371/journal.pone.0019306.en_US
dc.identifier.citedreferenceDrexler, C. W., W. R. Farrand, and J. D. Hughes. 1983. Correlation of glacial lakes in the Superior Basin with eastward discharge events from Lake Agassiz. Geol Assoc of Can 26: 309 – 329.en_US
dc.identifier.citedreferenceEisenlord, S. D., and D. R. Zak. 2010. Simulated atmospheric nitrogen deposition alters Actinobacterial community composition in forest soils. Soil Sci. Soc. Am. 74: 1157 – 1166.en_US
dc.identifier.citedreferenceEmbley, T. M., and E. Stackebrandt. 1994. The molecular phylogeny and systematic of the actinomycetes. Annu. Rev. Microbiol. 48: 257 – 289.en_US
dc.identifier.citedreferenceEvenson, E., W. Farrand, D. Eschman, D. Mickelson, and L. Maher. 1976. Greatlakean substage: a replacement for valderan substage in the lake Michigan basin. Quaternary Res. 6: 411 – 424.en_US
dc.identifier.citedreferenceFelsenstein, J. 2005. PHYLIP (phylogeny inference package) version 3.6. University of Washington, Seattle.en_US
dc.identifier.citedreferenceFierer, N., and R. B. Jackson. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. 103 (3): 626 – 631.en_US
dc.identifier.citedreferenceFukami, T., I. A. Dickie, P. Wilkie, B. C. Paulus, D. Park, A. Robers, et al. 2010. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol. Lett. 13: 675 – 684.en_US
dc.identifier.citedreferenceFulthorpe, R., A. N. Rhodes, and J. Tiedje. 1998. High levels of endemicity of 3‐chlorobenzoate‐degrading soil bacteria. Appl. Environ. Microbiol. 64: 1620 – 1627.en_US
dc.identifier.citedreferenceGe, Y., J. He, Y. Zhu, J. Zhang, Z. Xu, L. Zhang, and Y. Zheng. 2008. Differences in soil bacterial diversity: driven by contemporary disturbances or historical contingencies? Int. Soc. Microb. Ecol. 2: 254 – 64.en_US
dc.identifier.citedreferenceGløckner, F. O., E. Zaichikov, N. Belkova, L. Denissova, J. Pernthaler, A. Pernthaler, and R. Amann. 2000. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actionbacteria. Appl. Environ. Microbiol. 66: 5053 – 5065.en_US
dc.identifier.citedreferenceGreen, J., and B. J. M. Bohannan. 2006. Spatial scaling of microbial biodiversity. Trends Ecol. Evol. 21: 501 – 507.en_US
dc.identifier.citedreferenceGriffin, D.W., C. A. Kellogg, V. H. Garrison, and E. A. Shinn. 2002. The global transport of dust: an intercontinental river of dust, microorganisms and toxic chemicals flows through the Earth's atmosphere. Am. Sci. 90: 228 – 235.en_US
dc.identifier.citedreferenceHassett, J. E., D. R. Zak, C. B. Blackwood, and K. S. Pregitzer. 2009. Are basidiomycete laccase gene abundance and composition related to reduced lignolytic activity under elevated atmospheric NO3‐ deposition in a northern hardwood forest. Microb. Ecol. 57: 728 – 739.en_US
dc.identifier.citedreferenceHorner‐Devine, M. C., K. M. Carney, and B. J. M. Bohannan. 2004. An ecological perspective on bacterial biodiversity. Proc. R. Soc. Lond. B 271: 113 – 122.en_US
dc.identifier.citedreferenceLauber, C. L., M. S. Strickland, M. A. Bradford, and N. Fierer. 2008. The influence of soil properties on the structure of bacterial and fungal communities across land‐use types. Soil Biol. Biochem. 40: 2407 – 2415.en_US
dc.identifier.citedreferenceLegandre, P., and M. J. Anderson. 1999. Distance‐based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69: 1 – 24.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.