Show simple item record

High‐redshift formation and evolution of central massive objects – II. The census of BH seeds

dc.contributor.authorDevecchi, B.en_US
dc.contributor.authorVolonteri, Martaen_US
dc.contributor.authorRossi, E. M.en_US
dc.contributor.authorColpi, M.en_US
dc.contributor.authorPortegies Zwart, S.en_US
dc.date.accessioned2012-04-04T18:43:12Z
dc.date.available2013-06-11T19:15:43Zen_US
dc.date.issued2012-04-01en_US
dc.identifier.citationDevecchi, B.; Volonteri, M.; Rossi, E. M.; Colpi, M.; Portegies Zwart, S. (2012). "High‐redshift formation and evolution of central massive objects – II. The census of BH seeds." Monthly Notices of the Royal Astronomical Society 421(2). <http://hdl.handle.net/2027.42/90561>en_US
dc.identifier.issn0035-8711en_US
dc.identifier.issn1365-2966en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90561
dc.description.abstractWe present results of simulations aimed at tracing the formation of nuclear star clusters (NCs) and black hole (BH) seeds in the framework of the current Λcold dark matter (ΛCDM) cosmogony. These BH seeds are considered to be progenitors of the supermassive BHs that inhabit today’s galaxies. We focus on two mechanisms for the formation of BHs at high redshifts: as end‐products of (1) Population III stars in metal‐free haloes, and (2) runaway stellar collisions in metal‐poor NCs. Our model tracks the chemical, radiative and mechanical feedback of stars on the baryonic component of the evolving haloes. This procedure allows us to evaluate when and where the conditions for BH formation are met, and to trace the emergence of BH seeds arising from the dynamical channel, in a cosmological context. BHs start to appear already at redshift ∼30 as remnants of Population III stars. The efficiency of this mechanism begins decreasing once feedbacks become increasingly important. Around redshift z ∼ 15, BHs mostly form in the centre of mildly metal‐enriched haloes inside dense NCs. The seed BHs that form along the two pathways have at birth a mass of around 100–1000 M ⊙ . The occupation fraction of BHs is a function of both halo mass and mass growth rate: at a given redshift, heavier and faster growing haloes have a higher chance to form a native BH, or to acquire an inherited BH via merging of another system. With decreasing z , the probability of finding a BH shifts towards progressively higher mass halo intervals. This is due to the fact that, at later cosmic times, low‐mass systems rarely form a seed, and already formed BHs are deposited into larger mass systems due to hierarchical mergers. Our model predicts that at z = 0, all haloes above 10 11   M ⊙ should host a BH (in agreement with observational results), most probably inherited during their lifetime. Haloes less massive than 10 9   M ⊙ have a higher probability to host a native BH, but their occupation fraction decreases below 10 per cent.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.subject.otherBlack Hole Physicsen_US
dc.subject.otherStars: Population IIIen_US
dc.subject.otherGalaxies: High‐Redshiften_US
dc.subject.otherGalaxies: Nucleien_US
dc.subject.otherHydrodynamicsen_US
dc.titleHigh‐redshift formation and evolution of central massive objects – II. The census of BH seedsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumAstronomy Department, University of Michigan, 500 Church Street, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDipartimento di Fisica G. Occhialini, Università degli Studi di Milano Bicocca, Piazza della Scienza 3, 20126 Milano, Italyen_US
dc.contributor.affiliationotherLeiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, the Netherlandsen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90561/1/j.1365-2966.2012.20406.x.pdf
dc.identifier.doi10.1111/j.1365-2966.2012.20406.xen_US
dc.identifier.sourceMonthly Notices of the Royal Astronomical Societyen_US
dc.identifier.citedreferenceSchaerer D., 2002, A&A, 382, 28en_US
dc.identifier.citedreferenceSchneider R., Ferrara A., Salvaterra R., Omukai K., 2004, BAAS, 36, 704en_US
dc.identifier.citedreferenceSchneider R., Omukai K., Inoue A. K., Ferrara A., 2006, MNRAS, 369, 1437en_US
dc.identifier.citedreferenceSchnittman J. D., 2007, ApJ, 667, L133en_US
dc.identifier.citedreferenceSchnittman J. D., Buonanno A., 2007, ApJ, 662, L63en_US
dc.identifier.citedreferenceSijacki D., Springel V., Haehnelt M. G., 2009, MNRAS, 400, 100en_US
dc.identifier.citedreferenceSmith B. D., Turk M. J., Sigurdsson S., O’Shea B. W., Norman M. L., 2009, ApJ, 691, 441en_US
dc.identifier.citedreferenceSpaans M., Silk J., 2006, ApJ, 652, 902en_US
dc.identifier.citedreferenceSpolyar D., Freese K., Gondolo P., 2008, Phys. Rev. Lett., 100, 051101en_US
dc.identifier.citedreferenceStacy A., Greif T. H., Bromm V., 2009, in Jogee S., Marinova I., Hao L., Blanc G., eds, ASP Conf. Ser. 419, Galaxy Evolution: Emerging Insights and Future Challenges. Astron. Soc. Pac., San Francisco, p. 339en_US
dc.identifier.citedreferenceTanaka T., Haiman Z., 2009, ApJ, 696, 1798en_US
dc.identifier.citedreferenceTegmark M., Silk J., Rees M. J., Blanchard A., Abel T., Palla F., 1997, ApJ, 474, 1en_US
dc.identifier.citedreferenceToomre A., 1964, ApJ, 139, 1217en_US
dc.identifier.citedreferenceTremaine S. et al., 2002, ApJ, 574, 740en_US
dc.identifier.citedreferenceTrenti M., Stiavelli M., 2009, ApJ, 694, 879en_US
dc.identifier.citedreferenceTurk M. J., Abel T., O’Shea B., 2009, Sci., 325, 601en_US
dc.identifier.citedreferenceVink J. S., 2008, New Astron. Rev., 52, 419en_US
dc.identifier.citedreferenceVolonteri M., 2010, A&AR, 18, 279en_US
dc.identifier.citedreferenceVolonteri M., Begelman M. C., 2010, MNRAS, 409, 1022en_US
dc.identifier.citedreferenceVolonteri M., Rees M. J., 2006, ApJ, 650, 669en_US
dc.identifier.citedreferenceVolonteri M., Haardt F., Madau P., 2003, ApJ, 582, 559en_US
dc.identifier.citedreferenceVolonteri M., Lodato G., Natarajan P., 2008, MNRAS, 383, 1079en_US
dc.identifier.citedreferenceVolonteri M., Gültekin K., Dotti M., 2010, MNRAS, 404, 2143en_US
dc.identifier.citedreferenceWhalen D., Abel T., Norman M. L., 2004, ApJ, 610, 14en_US
dc.identifier.citedreferenceWhalen D., van Veelen B., O’Shea B. W., Norman M. L., 2008, ApJ, 682, 49en_US
dc.identifier.citedreferenceWolcott‐Green J., Haiman Z., Bryan G. L., 2011, MNRAS, 418, 838en_US
dc.identifier.citedreferenceYoshida N., Abel T., Hernquist L., Sugiyama N., 2003, ApJ, 592, 645en_US
dc.identifier.citedreferenceYungelson L. R., van den Heuvel E. P. J., Vink J. S., Portegies Zwart S. F., de Koter A., 2008, A&A, 477, 223en_US
dc.identifier.citedreferenceAlvarez M. A., Bromm V., Shapiro P. R., 2006, ApJ, 639, 621en_US
dc.identifier.citedreferenceBaker J. G., Boggs W. D., Centrella J., Kelly B. J., McWilliams S. T., Miller M. C., van Meter J. R., 2007, ApJ, 668, 1140en_US
dc.identifier.citedreferenceBardeen J. M., Petterson J. A., 1975, ApJ, 195, L65en_US
dc.identifier.citedreferenceBegelman M. C., Volonteri M., Rees M. J., 2006, MNRAS, 370, 289en_US
dc.identifier.citedreferenceBelkus H., Van Bever J., Vanbeveren D., 2007, ApJ, 659, 1576en_US
dc.identifier.citedreferenceBellovary J., Volonteri M., Governato F., Shen S., Quinn T., Wadsley J., 2011, ApJ, 742, 13en_US
dc.identifier.citedreferenceBett P., Eke V., Frenk C. S., Jenkins A., Helly J., Navarro J., 2007, MNRAS, 376, 215en_US
dc.identifier.citedreferenceBromm V., Loeb A., 2003, Nat, 425, 812en_US
dc.identifier.citedreferenceBromm V., Ferrara A., Coppi P. S., Larson R. B., 2001, MNRAS, 328, 969en_US
dc.identifier.citedreferenceCallegari S., Mayer L., Kazantzidis S., Colpi M., Governato F., Quinn T., Wadsley J., 2009, ApJ, 696, L89en_US
dc.identifier.citedreferenceCampanelli M., Lousto C. O., Zlochower Y., Merritt D., 2007, Phys. Rev. Lett., 98, 231102en_US
dc.identifier.citedreferenceCarr B. J., 2003, Quantum Gravity: From Theory to Experimental Search, Vol. 631, p. Feedback from the First Stars and Galaxies and its Influence on Structure 301en_US
dc.identifier.citedreferenceCiardi B., Ferrara A., 2005, Space Sci. Rev., 116, 625en_US
dc.identifier.citedreferenceClark P. C., Glover S. C. O., Klessen R. S., 2008, ApJ, 672, 757en_US
dc.identifier.citedreferenceClark P. C., Glover S. C. O., Klessen R. S., Bromm V., 2011, ApJ, 727, 110en_US
dc.identifier.citedreferenceDecarli R., Gavazzi G., Arosio I., Cortese L., Boselli A., Bonfanti C., Colpi M., 2007, MNRAS, 381, 136en_US
dc.identifier.citedreferenceDevecchi B., Volonteri M., 2009, ApJ, 694, 302 (DV09)en_US
dc.identifier.citedreferenceDevecchi B., Volonteri M., Colpi M., Haardt F., 2010, MNRAS, 409, 1057 (Paper I)en_US
dc.identifier.citedreferenceDijkstra M., Haiman Z., Mesinger A., Wyithe J. S. B., 2008, MNRAS, 391, 1961en_US
dc.identifier.citedreferenceDotan C., Rossi E. M., Shaviv N. J., 2011, MNRAS, 417, 3035en_US
dc.identifier.citedreferenceDotti M., Volonteri M., Perego A., Colpi M., Ruszkowski M., Haardt F., 2010, MNRAS, 402, 682en_US
dc.identifier.citedreferenceDunkley J. et al., 2009, ApJS, 180, 306en_US
dc.identifier.citedreferenceEisenstein D. J., Loeb A., 1995, ApJ, 443, 11en_US
dc.identifier.citedreferenceFan X. et al., 2001, AJ, 122, 2833en_US
dc.identifier.citedreferenceFan X. et al., 2004, AJ, 128, 515en_US
dc.identifier.citedreferenceFerrarese L., Merritt D., 2000, ApJ, 539, L9en_US
dc.identifier.citedreferenceFreese K., Bodenheimer P., Spolyar D., Gondolo P., 2008, ApJ, 685, 101en_US
dc.identifier.citedreferenceFreitag M., Gürkan M. A., Rasio F. A., 2006a, MNRAS, 368, 141en_US
dc.identifier.citedreferenceFreitag M., Rasio F. A., Baumgardt H., 2006b, MNRAS, 368, 121en_US
dc.identifier.citedreferenceGallo E., Treu T., Jacob J., Woo J.‐H., Marshall P. J., Antonucci R., 2008, ApJ, 680, 154en_US
dc.identifier.citedreferenceGebhardt K. et al., 2000, ApJ, 539, L13en_US
dc.identifier.citedreferenceGlebbeek E., Gaburov E., de Mink S. E., Pols O. R., Portegies Zwart S. F., Glover S. C. O., Clark P. C., Greif T. H., Johnson J. L., Bromm V., Klessen R. S., Stacy A., 2009, in Hunt L. K., Madden S., Schneider R., eds, Proc. IAU 255 Open Questions in the Study of Population III Star Formation. Cambridge Univ. Press, Cambridge, p. 3en_US
dc.identifier.citedreferenceGonzález J. A., Hannam M., Sperhake U., Brügmann B., Husa S., 2007, Phys. Rev. Lett., 98, 231101en_US
dc.identifier.citedreferenceGültekin K. et al., 2009, ApJ, 698, 198en_US
dc.identifier.citedreferenceGürkan M. A., Freitag M., Rasio F. A., 2004, ApJ, 604, 632en_US
dc.identifier.citedreferenceHaehnelt M. G., Rees M. J., 1993, MNRAS, 263, 168en_US
dc.identifier.citedreferenceHäring N., Rix H.‐W., 2004, ApJ, 604, L89en_US
dc.identifier.citedreferenceHeger A., Woosley S. E., 2002, ApJ, 567, 532en_US
dc.identifier.citedreferenceHeger A., Fryer C. L., Woosley S. E., Langer N., Hartmann D. H., 2003, ApJ, 591, 288en_US
dc.identifier.citedreferenceHerrmann F., Hinder I., Shoemaker D. M., Laguna P., Matzner R. A., 2007, Phys. Rev. D, 76, 084032en_US
dc.identifier.citedreferenceHirschi R., 2007, A&A, 461, 571en_US
dc.identifier.citedreferenceIocco F., 2008, ApJ, 677, L1en_US
dc.identifier.citedreferenceKhlopov M. Y., 2010, Res. Astron. Astrophys., 10, 495en_US
dc.identifier.citedreferenceKitayama T., Yoshida N., Susa H., Umemura M., 2004, ApJ, 613, 631en_US
dc.identifier.citedreferenceKoppitz M., Pollney D., Reisswig C., Rezzolla L., Thornburg J., Diener P., Schnetter E., 2007, Phys. Rev. Lett., 99, 041102en_US
dc.identifier.citedreferenceKoushiappas S. M., Bullock J. S., Dekel A., 2004, MNRAS, 354, 292en_US
dc.identifier.citedreferenceLodato G., Natarajan P., 2006, MNRAS, 371, 1813en_US
dc.identifier.citedreferenceLodato G., Natarajan P., 2007, MNRAS, 377, L64en_US
dc.identifier.citedreferenceLoeb A., Rasio F. A., 1994, ApJ, 432, 52en_US
dc.identifier.citedreferenceMachacek M. E., Bryan G. L., Abel T., 2001, ApJ, 548, 509en_US
dc.identifier.citedreferenceMcKee C. F., Tan J. C., 2008, ApJ, 681, 771en_US
dc.identifier.citedreferenceMadau P., Rees M. J., 2001, ApJ, 551, L27en_US
dc.identifier.citedreferenceMagorrian J. et al., 1998, AJ, 115, 2285en_US
dc.identifier.citedreferenceMaio U., Ciardi B., Dolag K., Tornatore L., Khochfar S., 2010, MNRAS, 407, 1003en_US
dc.identifier.citedreferenceMaio U., Khochfar S., Johnson J. L., Ciardi B., 2011, MNRAS, 414, 1145en_US
dc.identifier.citedreferenceMayer L., Kazantzidis S., Escala A., Callegari S., 2010, Nat, 466, 1082en_US
dc.identifier.citedreferenceMenou K., Haiman Z., Narayanan V. K., 2001, ApJ, 558, 535en_US
dc.identifier.citedreferenceMeynet G. et al., 2008, in Bresolin F., Crowther P. A., Puls J., eds, Proc. IAU Symp. 250, Massive Stars as Cosmic Engines. Cambridge Univ. Press, Cambridge, p. 571en_US
dc.identifier.citedreferenceMonaco P., Theuns T., Taffoni G., Governato F., Quinn T., Stadel J., 2002a, ApJ, 564, 8en_US
dc.identifier.citedreferenceMonaco P., Theuns T., Taffoni G., 2002b, MNRAS, 331, 587en_US
dc.identifier.citedreferenceNatarajan A., Tan J. C., O’Shea B. W., 2009, ApJ, 692, 574en_US
dc.identifier.citedreferenceO’Shea B. W., Norman M. L., 2008, ApJ, 673, 14en_US
dc.identifier.citedreferenceOmukai K., Palla F., 2003, ApJ, 589, 677en_US
dc.identifier.citedreferenceOmukai K., Tsuribe T., Schneider R., Ferrara A., 2005, ApJ, 626, 627en_US
dc.identifier.citedreferenceOmukai K., Schneider R., Haiman Z., 2008, ApJ, 686, 801en_US
dc.identifier.citedreferencePerego A., Dotti M., Colpi M., Volonteri M., 2009, MNRAS, 399, 2249en_US
dc.identifier.citedreferencePortegies Zwart S. F., McMillan S. L. W., 2002, ApJ, 576, 899en_US
dc.identifier.citedreferencePortegies Zwart S. F., Makino J., McMillan S. L. W., Hut P., 1999, A&A, 348, 117en_US
dc.identifier.citedreferencePortegies Zwart S. F., Baumgardt H., Hut P., Makino J., McMillan S. L. W., 2004, Nat, 428, 724en_US
dc.identifier.citedreferencePrieto J., Padoan P., Jimenez R., Infante L., 2011, ApJ, 731, L38en_US
dc.identifier.citedreferenceSafranek‐Shrader C., Bromm V., Milosavljevic M., 2010, ApJ, 723, 1568en_US
dc.identifier.citedreferenceSantoro F., Shull J. M., 2006, ApJ, 643, 26en_US
dc.identifier.citedreferenceScannapieco E., Schneider R., Ferrara A., 2003, ApJ, 589, 35en_US
dc.identifier.citedreferenceSchmidt M., 1959, ApJ, 129, 243en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.