Show simple item record

Using polymeric materials to control stem cell behavior for tissue regeneration

dc.contributor.authorZhang, Nianlien_US
dc.contributor.authorKohn, David H.en_US
dc.date.accessioned2012-04-04T18:43:42Z
dc.date.available2013-05-01T17:24:43Zen_US
dc.date.issued2012-03en_US
dc.identifier.citationZhang, Nianli; Kohn, David H. (2012). "Using polymeric materials to control stem cell behavior for tissue regeneration." Birth Defects Research Part C: Embryo Today: Reviews 96(1): 63-81. <http://hdl.handle.net/2027.42/90582>en_US
dc.identifier.issn1542-975Xen_US
dc.identifier.issn1542-9768en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90582
dc.description.abstractPatients with organ failure often suffer from increased morbidity and decreased quality of life. Current strategies of treating organ failure have limitations, including shortage of donor organs, low efficiency of grafts, and immunological problems. Tissue engineering emerged about two decades ago as a strategy to restore organ function with a living, functional engineered substitute. However, the ability to engineer a functional organ is limited by a limited understanding of the interactions between materials and cells that are required to yield functional tissue equivalents. Polymeric materials are one of the most promising classes of materials for use in tissue engineering, due to their biodegradability, flexibility in processing and property design, and the potential to use polymer properties to control cell function. Stem cells offer potential in tissue engineering because of their unique capacity to self‐renew and differentiate into neurogenic, osteogenic, chondrogenic, and myogenic lineages under appropriate stimuli from extracellular components. This review examines recent advances in stem cell–polymer interactions for tissue regeneration, specifically highlighting control of polymer properties to direct adhesion, proliferation, and differentiation of stem cells, and how biomaterials can be designed to provide some of the stimuli to cells that the natural extracellular matrix does. (Part C) 96:63–81, 2012. © 2012 Wiley Periodicals, Inc.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherDifferentiationen_US
dc.subject.otherPolymeren_US
dc.subject.otherTissue Engineeringen_US
dc.subject.otherAdhesionen_US
dc.subject.otherProliferationen_US
dc.subject.otherStem Cellsen_US
dc.titleUsing polymeric materials to control stem cell behavior for tissue regenerationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelObstetrics and Gynecologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109‐2099en_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan 48109‐1078en_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan 48109‐1078en_US
dc.identifier.pmid22457178en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90582/1/21003_ftp.pdf
dc.identifier.doi10.1002/bdrc.21003en_US
dc.identifier.sourceBirth Defects Research Part C: Embryo Today: Reviewsen_US
dc.identifier.citedreferenceSa‐Lima H, Caridade SG, Mano JF, Reis RL. 2010. Stimuli‐responsive chitosan‐starch injectable hydrogels combined with encapsulated adipose‐derived stromal cells for articular cartilage regeneration. Soft Matter 6: 5184 – 5195.en_US
dc.identifier.citedreferenceVilla‐Diaz LG, Nandivada H, Ding J, Nogueira‐De‐Souza NC, Krebsbach PH, O'Shea KS, Lahann J, Smith GD. 2010. Synthetic polymer coatings for long‐term growth of human embryonic stem cells. Nat Biotechnol 28: 581 – 583.en_US
dc.identifier.citedreferenceWall ST, Yeh C‐C, Tu RYK, Mann MJ, Healy KE. 2010. Biomimetic matrices for myocardial stabilization and stem cell transplantation. J Biomed Mater Res A 95A: 1055 – 1066.en_US
dc.identifier.citedreferenceWang LS, Boulaire J, Chan PPY, Chung JE, Kurisawa M. 2010a. The role of stiffness of gelatin‐hydroxyphenylpropionic acid hydrogels formed by enzyme‐mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials 31: 8608 – 8616.en_US
dc.identifier.citedreferenceWang LS, Chung JE, Chan PPY, Kurisawa M. 2010b. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials 31: 1148 – 1157.en_US
dc.identifier.citedreferenceWeaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C, Bissell MJ. 1997. Reversion of the malignant phenotype of human breast cells in three‐dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137: 231 – 245.en_US
dc.identifier.citedreferenceWei Y, Li BS, Fu CK, Qi HX. 2010. Electroactive conducting polymers for biomedical applications. Acta Polym Sin 12: 1399 – 1405.en_US
dc.identifier.citedreferenceWei Y, Zhang XH, Song Y, Han B, Hu XY, Wang XZ, Lin YH, Deng XL. 2011. Magnetic biodegradable Fe(3)O(4)/CS/PVA nanofibrous membranes for bone regeneration. Biomed Mater 6: 055008.en_US
dc.identifier.citedreferenceWojtowicz AM, Shekaran A, Oest ME, Dupont KM, Templeman KL, Hutmacher DW, Guldberg RE, Garcia AJ. 2010. Coating of biomaterial scaffolds with the collagen‐mimetic peptide GFOGER for bone defect repair. Biomaterials 31: 2574 – 2582.en_US
dc.identifier.citedreferenceWu SC, Chang WH, Dong GC, Chen KY, Chen YS, Yao CH. 2011. Cell adhesion and proliferation enhancement by gelatin nanofiber scaffolds. J Bioact Compat Polym 26: 565 – 577.en_US
dc.identifier.citedreferenceXynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. 2000a. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin‐like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276: 461 – 465.en_US
dc.identifier.citedreferenceXynos ID, Hukkanen MVJ, Batten JJ, Buttery LD, Hench LL, Polak JM. 2000b. Bioglass (R) 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif Tissue Int 67: 321 – 329.en_US
dc.identifier.citedreferenceYang F, Murugan R, Wang S, Ramakrishna S. 2005. Electrospinning of nano/micro scale poly(L‐lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26: 2603 – 2610.en_US
dc.identifier.citedreferenceYang XBB, Webb D, Blaker J, Boccaccini AR, Maquet V, Cooper C, Oreffo ROC. 2006. Evaluation of human bone marrow stromal cell growth on biodegradable polymer/Bioglass (R) composites. Biochem Biophys Res Commun 342: 1098 – 1107.en_US
dc.identifier.citedreferenceYe ZY, Zhou Y, Cai HB, Tan WS. 2011. Myocardial regeneration: Roles of stem cells and hydrogels. Adv Drug Deliv Rev 63: 688 – 697.en_US
dc.identifier.citedreferenceYokoyama S, Fukuda N, Saito S, Kawano T, Li Y, Mugishima H. 2006. Human umbilical cord blood cells improve cardiac function after myocardial infarction. Am J Cardiol 98: 219M – 219M.en_US
dc.identifier.citedreferenceYou ML, Peng GF, Li JA, Ma P, Wang ZH, Shu WL, Peng SW, Chen GQ. 2011. Chondrogenic differentiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide. Biomaterials 32: 2305 – 2313.en_US
dc.identifier.citedreferenceYu JS, Du KT, Fang QZ, Gu YP, Mihardja SS, Sievers RE, Wu JC, Lee RJ. 2010. The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 31: 7012 – 7020.en_US
dc.identifier.citedreferenceZhang NL, Molenda JA, Fournelle JH, Murphy WL, Sahai N. 2010b. Effects of pseudowollastonite (CaSiO(3)) bioceramic on in vitro activity of human mesenchymal stem cells. Biomaterials 31: 7653 – 7665.en_US
dc.identifier.citedreferenceZhang L, Stauffer WR, Jane EP, Sammak PJ, Cui XYT. 2010a. Enhanced differentiation of embryonic and neural stem cells to neuronal fates on laminin peptides doped polypyrrole. Macromol Biosci 10: 1456 – 1464.en_US
dc.identifier.citedreferenceZhang XZ, Wu DQ, Chu CC. 2004. Synthesis, characterization and controlled drug release of thermosensitive IPN‐PNIPAAm hydrogels. Biomaterials 25: 3793 – 3805.en_US
dc.identifier.citedreferenceZhao L, Burguera EF, Xu HHK, Amin N, Ryou H, Arola DD. 2010. Fatigue and human umbilical cord stem cell seeding characteristics of calcium phosphate‐chitosan‐biodegradable fiber scaffolds. Biomaterials 31: 840 – 847.en_US
dc.identifier.citedreferenceZhao F, Grayson WL, Ma T, Bunnell B, Lu WW. 2006a. Effects of hydroxyapatite in 3‐D chitosan‐gelatin polymer network on human mesenchymal stem cell construct development. Biomaterials 27: 1859 – 1867.en_US
dc.identifier.citedreferenceZhao G, Zinger O, Schwartz Z, Wieland M, Landolt D, Boyan BD. 2006b. Osteoblast‐like cells are sensitive to submicron‐scale surface structure. Clin Oral Implan Res 17: 258 – 264.en_US
dc.identifier.citedreferenceZimmermann WH, Schneiderbanger K, Schubert P, Didie M, Munzel F, Heubach JF, Kostin S, Neuhuber WL, Eschenhagen T. 2002. Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90: 223 – 230.en_US
dc.identifier.citedreferenceAhearne M, Buckley CT, Kelly DJ. 2011. A growth factor delivery system for chondrogenic induction of infrapatellar fat pad‐derived stem cells in fibrin hydrogels. Biotechnol Appl Bioc 58: 345 – 352.en_US
dc.identifier.citedreferenceAkins RE, Gratton K, Quezada E, Rutter H, Tsuda T, Soteropoulos P. 2007. Gene expression profile of bioreactor‐cultured cardiac cells: activation of morphogenetic pathways for tissue engineering. DNA Cell Biol 26: 425 – 434.en_US
dc.identifier.citedreferenceAkkouch A, Zhang Z, Rouabhia M. 2011. A novel collagen/hydroxyapatite/poly (lactide‐co‐epsilon‐caprolactone) biodegradable and bioactive 3D porous scaffold for bone regeneration. J Biomed Mater Res A 96A: 693 – 704.en_US
dc.identifier.citedreferenceAkpalo E, Bidault L, Boissiere M, Vancaeyzeele C, Fichet O, Larreta‐Garde V. 2011. Fibrin‐polyethylene oxide interpenetrating polymer networks: new self‐supported biomaterials combining the properties of both protein gel and synthetic polymer. Acta Biomater 7: 2418 – 2427.en_US
dc.identifier.citedreferenceAlvarez‐Barreto JF, Landy B, VanGordon S, Place L, DeAngelis PL, Sikavitsas VI. 2011. Enhanced osteoblastic differentiation of mesenchymal stem cells seeded in RGD‐functionalized PLLA scaffolds and cultured in a flow perfusion bioreactor. J Tissue Eng Regen Med 5: 464 – 475.en_US
dc.identifier.citedreferenceAnderson SB, Lin CC, Kuntzler DV, Anseth KS. 2011. The performance of human mesenchymal stem cells encapsulated in cell‐degradable polymer‐peptide hydrogels. Biomaterials 32: 3564 – 3574.en_US
dc.identifier.citedreferenceAnderson PAW, Muller‐Borer BJ, Esch GL, Coleman WB, Grisham JW, Malouf NN. 2007. Calcium signals induce liver stem cells to acquire a cardiac phenotype. Cell Cycle 6: 1565 – 1569.en_US
dc.identifier.citedreferenceAnselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P. 2000. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res 49: 155 – 166.en_US
dc.identifier.citedreferenceAnselme K, Bigerelle M, Noel B, Iost A, Hardouin P. 2002. Effect of grooved titanium substratum on human osteoblastic cell growth. J Biomed Mater Res 60: 529 – 540.en_US
dc.identifier.citedreferenceAydin HM, Korkusuz P, Vargel I, Kilic E, Guzel E, Cavusoglu T, Ucgan D, Piskin E. 2011. A 6‐month in vivo study of polymer/mesenchymal stem cell constructs for cranial defects. J Bioact Compat Polym 26: 207 – 221.en_US
dc.identifier.citedreferenceBacakova L, Filova E, Parizek M, Ruml T, Svorcik V. 2011. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv 29: 739 – 767.en_US
dc.identifier.citedreferenceBanerjee A, Arha M, Choudhary S, Ashton RS, Bhatia SR, Schaffer DV, Kane RS. 2009. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30: 4695 – 4699.en_US
dc.identifier.citedreferenceBao CY, Chen WC, Weir MD, Thein‐Han W, Xu HHK. 2011. Effects of electrospun submicron fibers in calcium phosphate cement scaffold on mechanical properties and osteogenic differentiation of umbilical cord stem cells. Acta Biomater 7: 4037 – 4044.en_US
dc.identifier.citedreferenceBattista S, Guarnieri D, Borselli C, Zeppetelli S, Borzacchiello A, Mayol L, Gerbasio D, Keene DR, Ambrosio L, Netti PA. 2005. The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials 26: 6194 – 6207.en_US
dc.identifier.citedreferenceBeohar N, Rapp J, Pandya S, Losordo DW. 2010. Rebuilding the damaged heart the potential of cytokines and growth factors in the treatment of ischemic heart disease. J Am Coll Cardiol 56: 1287 – 1297.en_US
dc.identifier.citedreferenceBigerelle M, Iost A. 2001. A new method to calculate the fractal dimension of surfaces: application to human cell proliferation. Comput Math Appl 42: 241 – 253.en_US
dc.identifier.citedreferenceBilir A, Erguven M, Zilan A, Oktem G, Korkmaz S, Korkmaz M. 2011. Evaluation and comparison of in vitro biocompatibility of poly (glycolic acid) and poly (lactide‐co‐glycolide acid) on mature spheroids of tumorigenic and non‐tumorigenic cell lines. Turk Klin Tip Bilim 31: 1 – 14.en_US
dc.identifier.citedreferenceBosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T. 2006. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng 93: 1152 – 1163.en_US
dc.identifier.citedreferenceBoura C, Menu P, Payan E, Picart C, Voegel JC, Muller S, Stoltz JF. 2003. Endothelial cells grown on thin polyelectrolyte mutlilayered films: an evaluation of a new versatile surface modification. Biomaterials 24: 3521 – 3530.en_US
dc.identifier.citedreferenceBrafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S. 2010. Long‐term human pluripotent stem cell self‐renewal on synthetic polymer surfaces. Biomaterials 31: 9135 – 9144.en_US
dc.identifier.citedreferenceCao YF, Li D, Shang CH, Yang ST, Wang JF, Wang XN. 2010. Three‐dimensional culture of human mesenchymal stem cells in a polyethylene terephthalate matrix. Biomed Mater 5: 065013.en_US
dc.identifier.citedreferenceCao B, Yan SF, Zhang KX, Song ZJ, Cao T, Chen XS, Cui L, Yin JB. 2011. A poly(acrylic acid)‐block‐poly(l‐glutamic acid) diblock copolymer with improved cell adhesion for surface modification. Macromol Biosci 11: 970 – 977.en_US
dc.identifier.citedreferenceCastellani R, de Ruijter A, Renggli H, Jansen J. 1999. Response of rat bone marrow cells to differently roughened titanium discs. Clin Oral Implants Res 10: 369 – 378.en_US
dc.identifier.citedreferenceCausley J, Stitzel S, Brady S, Diamond D, Wallace G. 2005. Electrochemically‐induced fluid movement using polypyrrole. Synthetic Met 151: 60 – 64.en_US
dc.identifier.citedreferenceCha C, Kim ES, Kim IW, Kong H. 2011. Integrative deign of a poly(ethylene glycol)‐poly(propylene glycol)‐alginate hydrogel to control three dimensional biomineralization. Biomaterials 32: 2695 – 2703.en_US
dc.identifier.citedreferenceChan G, Mooney DJ. 2008. New materials for tissue engineering: towards greater control over the biological response. Trends Biotechnol 26: 382 – 392.en_US
dc.identifier.citedreferenceChandler EM, Berglund CM, Lee JS, Polacheck WJ, Gleghorn JP, Kirby BJ, Fischbach C. 2011. Stiffness of photocrosslinked RGD‐alginate gels regulates adipose progenitor cell behavior. Biotechnol Bioeng 108: 1683 – 1692.en_US
dc.identifier.citedreferenceChen QZ, Jin LY, Cook WD, Mohn D, Lagerqvist EL, Elliott DA, Haynes JM, Boyd N, Stark WJ, Pouton CW, Stanley EG, Elefanty AG. 2010. Elastomeric nanocomposites as cell delivery vehicles and cardiac support devices. Soft Matter 6: 4715 – 4726.en_US
dc.identifier.citedreferenceChen MW, Le DQS, Baatrup A, Nygaard JV, Hein S, Bjerre L, Kassem M, Zou XN, Bunger C. 2011. Self‐assembled composite matrix in a hierarchical 3‐D scaffold for bone tissue engineering. Acta Biomater 7: 2244 – 2255.en_US
dc.identifier.citedreferenceCheng ZY, Teoh SH. 2004. Surface modification of ultra thin poly (epsilon‐caprolactone) films using acrylic acid and collagen. Biomaterials 25: 1991 – 2001.en_US
dc.identifier.citedreferenceCho SW, Kim IK, Bhang SH, Joung BY, Kim YJ, Yoo KJ, Yang YS, Choi CY, Kim BS. 2007. Combined therapy with human cord blood cell transplantation and basic fibroblast growth factor delivery for treatment of myocardial infarction. Eur J Heart Fail 9: 974 – 985.en_US
dc.identifier.citedreferenceChung EH, Gilbert M, Virdi AS, Sena K, Sumner DR, Healy KE. 2006. Biomimetic artificial ECMs stimulate bone regeneration. J Biomed Mater Res A 79A: 815 – 826.en_US
dc.identifier.citedreferenceChung TW, Limpanichpakdee T, Yang MH, Tyan YC. 2011. An electrode of quartz crystal microbalance decorated with CNT/chitosan/fibronectin for investigating early adhesion and deforming morphology of rat mesenchymal stem cells. Carbohydr Polym 85: 726 – 732.en_US
dc.identifier.citedreferenceClause KC, Tinney JP, Liu LJ, Gharaibeh B, Huard J, Kirk JA, Shroff SG, Fujimoto KL, Wagner WR, Ralphe JC, Keller BB, Tobita K. 2010. A Three‐dimensional gel bioreactor for assessment of cardiomyocyte induction in skeletal muscle‐derived stem cells. Tissue Eng C Methods 16: 375 – 385.en_US
dc.identifier.citedreferenceCordonnier T, Sohier J, Rosset P, Layrolle P. 2011. Biomimetic materials for bone tissue engineering ‐ state of the art and future trends. Adv Eng Mater 13: B135 – B150.en_US
dc.identifier.citedreferenceCosta‐Pinto AR, Correlo VM, Sol PC, Bhattacharya M, Charbord P, Delorme B, Reis RL, Neves NM. 2009. Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications. Biomacromolecules 10: 2067 – 2073.en_US
dc.identifier.citedreferenceCraciunescu O, Lungu M, Zarnescu O, Gaspar A, Moldovan L. 2008. Polyurethane‐based materials covered with natural polymers for medical applications. Mater Plast 45: 163 – 166.en_US
dc.identifier.citedreferenceDawson E, Mapili G, Erickson K, Taqvi S, Roy K. 2008. Biomaterials for stem cell differentiation. Adv Drug Delivery Rev 60: 215 – 228.en_US
dc.identifier.citedreferenceD'Britto V, Tiwari S, Purohit V, Wadgaonkar PP, Bhoraskar SV, Bhonde RR, Prasad BLV. 2009. Composites of plasma treated poly(etherimide) films with gold nanoparticles and lysine through layer by layer assembly: a “friendly‐rough” surface for cell adhesion and proliferation for tissue engineering applications. J Mater Chem 19: 544 – 550.en_US
dc.identifier.citedreferenceDe Giglio E, Sabbatini L, Colucci S, Zambonin G. 2000. Synthesis, analytical characterization, and osteoblast adhesion properties on RGD‐grafted polypyrrole coatings on titanium substrates. J Biomat Sci Polym Ed 11: 1073 – 1083.en_US
dc.identifier.citedreferenceDeligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. 2001. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 22: 87 – 96.en_US
dc.identifier.citedreferenceDimitrievska S, Petit A, Ajji A, Bureau MN, Yahia L. 2008. Biocompatibility of novel polymer‐apatite nanocomposite fibers. J Biomed Mater Res A 84A: 44 – 53.en_US
dc.identifier.citedreferenceDischer DE, Janmey P, Wang YL. 2005. Tissue cells feel and respond to the stiffness of their substrate. Science 310: 1139 – 1143.en_US
dc.identifier.citedreferenceDischer DE, Mooney DJ, Zandstra PW. 2009. Growth factors, matrices, and forces combine and control stem cells. Science 324: 1673 – 1677.en_US
dc.identifier.citedreferenceDrumheller PD, Hubbell JA. 1994. Polymer networks with grafted cell‐adhesion peptides for highly biospecific cell adhesive substrates. Anal Biochem 222: 380 – 388.en_US
dc.identifier.citedreferenceEndres M, Hutmacher DW, Salgado AJ, Kaps C, Ringe J, Reis RL, Sittinger M, Brandwood A, Schantz JT. 2003. Osteogenic induction of human bone marrow‐derived mesenchymal progenitor cells in novel synthetic polymer‐hydrogel matrices. Tissue Eng 9: 689 – 702.en_US
dc.identifier.citedreferenceEngler AJ, Sen S, Sweeney HL, Discher DE. 2006. Matrix elasticity directs stem cell lineage specification. Cell 126: 677 – 689.en_US
dc.identifier.citedreferenceErickson IE, Huang AH, Sengupta S, Kestle S, Burdick JA, Mauck RL. 2009. Macromer density influences mesenchymal stem cell chondrogenesis and maturation in photocrosslinked hyaluronic acid hydrogels. Osteoarthritis Cartilage 17: 1639 – 1648.en_US
dc.identifier.citedreferenceErisken C, Kalyon DM, Wang HJ, Ornek‐Ballanco C, Xu JH. 2011. Osteochondral tissue formation through adipose‐derived stromal cell differentiation on biomimetic polycaprolactone nanofibrous scaffolds with graded insulin and beta‐glycerophosphate concentrations. Tissue Eng A 17: 1239 – 1252.en_US
dc.identifier.citedreferenceFan HB, Tao HR, Wu YN, Hu YY, Yan YN, Luo ZJ. 2011. TGF‐beta 3 immobilized PLGA‐gelatin/chondroitin sulfate/hyaluronic acid hybrid scaffold for cartilage regeneration. J Biomed Mater Res A 95A: 982 – 992.en_US
dc.identifier.citedreferenceFan HB, Zhang CL, Li J, Bi L, Qin L, Wu H, Hu YY. 2008. Gelatin microspheres containing TGF‐beta 3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture. Biomacromolecules 9: 927 – 934.en_US
dc.identifier.citedreferenceFisher OZ, Khademhosseini A, Langer R, Peppas NA. 2010. Bioinspired Materials for Controlling Stem Cell Fate. Accounts Chem Res 43: 419 – 428.en_US
dc.identifier.citedreferenceFittkau MH, Zilla P, Bezuidenhout D, Lutolf M, Human P, Hubbell JA, Davies N. 2005. The selective modulation of endothelial cell mobility on RGD peptide containing surfaces by YIGSR peptides. Biomaterials 26: 167 – 174.en_US
dc.identifier.citedreferenceFlanagan LA, Rebaza LM, Derzic S, Schwartz PH, Monuki ES. 2006. Regulation of human neural precursor cells by laminin and integrins. J Neurosci Res 83: 845 – 856.en_US
dc.identifier.citedreferenceFreed LE, Engelmayr GC, Borenstein JT, Moutos FT, Guilak F. 2009. Advanced material strategies for tissue engineering scaffolds. Adv Mater 21: 3410 – 3418.en_US
dc.identifier.citedreferenceGonen‐Wadmany M, Gepstein L, Seliktar D. 2004. Controlling the cellular organization of tissue‐engineered cardiac constructs. Cardiac Engineering: from Genes and Cells to Structure and Function. New York, NY: The New York Academy of Sciences. p 299 – 311.en_US
dc.identifier.citedreferenceGu HG, Yue ZL, Leong WS, Nugraha B, Tan LP. 2010. Control of in vitro neural differentiation of mesenchymal stem cells in 3D macroporous, cellulosic hydrogels. Regen Med 5: 245 – 253.en_US
dc.identifier.citedreferenceGurav N, Lutolf MP, Raeber GP, Hubbell JA, Di Silvio L. 2007. Differentiation of human bone marrow stem cells within RGD functionalised, proteolytically sensitive PEG gels. Tissue Eng 13: 1675 – 1675.en_US
dc.identifier.citedreferenceHatakeyama H, Kikuchi A, Yamato M, Okano T. 2005. Influence of insulin immobilization to thermoresponsive culture surfaces on cell proliferation and thermally induced cell detachment. Biomaterials 26: 5167 – 5176.en_US
dc.identifier.citedreferenceHatami M, Mehrjardi NZ, Kiani S, Hemmesi K, Azizi H, Shahverdi A, Baharvand H. 2009. Human embryonic stem cell‐derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord. Cytotherapy 11: 618 – 630.en_US
dc.identifier.citedreferenceHatano K, Inoue H, Kojo T, Matsunaga T, Tsujisawa T, Uchiyama C, Uchida Y. 1999. Effect of surface roughness on proliferation and alkaline phosphatase expression of rat calvarial cells cultured on polystyrene. Bone 25: 439 – 445.en_US
dc.identifier.citedreferenceHealy KE. 2004. Control of cell function with tunable hydrogel networks. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference, San Francisco, CA 7: 5035.en_US
dc.identifier.citedreferenceHern DL, Hubbell JA. 1998. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res 39: 266 – 276.en_US
dc.identifier.citedreferenceHeydarkhan‐Hagvall S, Schenke‐Layland K, Dhanasopon AP, Rofail F, Smith H, Wu BM, Shemin R, Beygui RE, MacLellan WR. 2008. Three‐dimensional electrospun ECM‐based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 29: 2907 – 2914.en_US
dc.identifier.citedreferenceHeymer A, Bradica G, Eulert J, Noth U. 2009. Multiphasic collagen fibre‐PLA composites seeded with human mesenchymal stem cells for osteochondral defect repair: an in vitro study. J Tissue Eng Regen Med 3: 389 – 397.en_US
dc.identifier.citedreferenceHoltorf HL, Jansen JA, Mikos AG. 2005. Ectopic bone formation in rat marrow stromal cell/titanium fiber mesh scaffold constructs: effect of initial cell phenotype. Biomaterials 26: 6208 – 6216.en_US
dc.identifier.citedreferenceHsia HC, Nair MR, Mintz RC, Corbett SA. 2011. The fiber diameter of synthetic bioresorbable extracellular matrix influences human fibroblast morphology and fibronectin matrix assembly. Plast Reconstr Surg 127: 2312 – 2320.en_US
dc.identifier.citedreferenceHsieh A, Zahir T, Lapitsky Y, Amsden B, Wan WK, Shoichet MS. 2010. Hydrogel/electrospun fiber composites influence neural stem/progenitor cell fate. Soft Matter 6: 2227 – 2237.en_US
dc.identifier.citedreferenceHuang YC, Khait L, Birla RK. 2007. Contractile three‐dimensional bioengineered heart muscle for myocardial regeneration. J Biomed Mater Res A 80A: 719 – 731.en_US
dc.identifier.citedreferenceHubbell JA. 1995. Biomaterials in tissue engineering. Bio‐Technology 13: 565 – 576.en_US
dc.identifier.citedreferenceHutmacher DW. 2000. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21: 2529 – 2543.en_US
dc.identifier.citedreferenceHwang NS, Varghese S, Theprungsirikul P, Canver A, Elisseeff J. 2006. Enhanced chondrogenic differentiation of murine embryonic stem cells in hydrogels with glucosamine. Biomaterials 27: 6015 – 6023.en_US
dc.identifier.citedreferenceIdota N, Tsukahara T, Sato K, Okano T, Kitamori T. 2009. The use of electron beam lithographic graft‐polymerization on thermoresponsive polymers for regulating the directionality of cell attachment and detachment. Biomaterials 30: 2095 – 2101.en_US
dc.identifier.citedreferenceIrwin EE, Gupta R, Dashti DC, Healy KE. 2011. Engineered polymer‐media interfaces for the long‐term self‐renewal of human embryonic stem cells. Biomaterials 32: 6912 – 6919.en_US
dc.identifier.citedreferenceJeong SI, Kwon JH, Lim JI, Cho SW, Jung YM, Sung WJ, Kim SH, Kim YH, Lee YM, Kim BS, Choi CY, Kim SJ. 2005. Mechano‐active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials 26: 1405 – 1411.en_US
dc.identifier.citedreferenceJiao YP, Liu ZH, Zhou CR. 2007. Fabrication and characterization of PLLA‐chitosan hybrid scaffolds with improved cell compatibility. J Biomed Mater Res A 80A: 820 – 825.en_US
dc.identifier.citedreferenceKang YQ, Scully A, Young DA, Kim S, Tsao H, Sen M, Yang YZ. 2011. Enhanced mechanical performance and biological evaluation of a PLGA coated beta‐TCP composite scaffold for load‐bearing applications. Eur Polym J 47: 1569 – 1577.en_US
dc.identifier.citedreferenceKao WJ, Lee D, Schense JC, Hubbell TA. 2001. Fibronectin modulates macrophage adhesion and FBGC formation: The pole of RGD, PHSRN, and PRRARV domains. J Biomed Mater Res 55: 79 – 88.en_US
dc.identifier.citedreferenceKatakowski M, Zhang ZG, deCarvalho AC, Chopp M. 2005. EphB2 induces proliferation and promotes a neuronal fate in adult subventricular neural precursor cells. Neurosci Lett 385: 204 – 209.en_US
dc.identifier.citedreferenceKatz A, Meiri N. 2006. Brain‐derived neurotrophic factor is critically involved in thermal‐experience‐dependent developmental plasticity. J Neurosci 26: 3899 – 3907.en_US
dc.identifier.citedreferenceKitazono E, Kaneko H, Miyoshi T, Miyamoto K. 2004. Tissue engineering using nanofiber. J Synth Org Chem Jpn 62: 514 – 519.en_US
dc.identifier.citedreferenceKorovessis PG, Deligianni DD, Lenke LG. 2002. Role of surface roughness of titanium versus hydroxyapatite on human bone marrow cells response. J Spinal Disord Tech 15: 175 – 183.en_US
dc.identifier.citedreferenceKraehenbuehl TP, Zammaretti P, Van der Vlies AJ, Schoenmakers RG, Lutolf MP, Jaconi ME, Hubbell JA. 2008. Three‐dimensional extracellular matrix‐directed cardioprogenitor differentiation: systematic modulation of a synthetic cell‐responsive PEG‐hydrogel. Biomaterials 29: 2757 – 2766.en_US
dc.identifier.citedreferenceKumashiro Y, Yamato M, Okano T. 2010. Cell attachment‐detachment control on temperature‐responsive thin surfaces for novel tissue engineering. Ann Biomed Eng 38: 1977 – 1988.en_US
dc.identifier.citedreferenceLanniel M, Huq E, Allen S, Buttery L, Williams PM, Alexander MR. 2011. Substrate induced differentiation of human mesenchymal stem cells on hydrogels with modified surface chemistry and controlled modulus. Soft Matter 7: 6501 – 6514.en_US
dc.identifier.citedreferenceLe DM, Kulangara K, Adler AF, Leong KW, Ashby VS. 2011. Dynamic topographical control of mesenchymal stem cells by culture on responsive poly(epsilon‐caprolactone) surfaces. Adv Mater 23: 3278 – 3283.en_US
dc.identifier.citedreferenceLee MH, Adams CS, Boettiger D, DeGrado WF, Shapiro IM, Composto RJ, Ducheyne P. 2007. Adhesion of MC3T3‐E1 cells to RGD peptides of different flanking residues: detachment strength and correlation with long‐term cellular function. J Biomed Mater Res A 81A: 150 – 160.en_US
dc.identifier.citedreferenceLee JY, Bashur CA, Goldstein AS, Schmidt CE. 2009a. Polypyrrole‐coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30: 4325 – 4335.en_US
dc.identifier.citedreferenceLee JY, Lee JW, Schmidt CE. 2009b. Neuroactive conducting scaffolds: nerve growth factor conjugation on active ester‐functionalized polypyrrole. J R Soc Interface 6: 801 – 810.en_US
dc.identifier.citedreferenceLeonova EV, Pennington KE, Krebsbach PH, Kohn DH. 2006. Substrate mineralization stimulates focal adhesion contact redistribution and cell motility of bone marrow stromal cells. J Biomed Mater Res A 79A: 263 – 270.en_US
dc.identifier.citedreferenceLeor J, Aboulafia‐Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, Granot Y, Cohen S. 2000. Bioengineered cardiac grafts – a new approach to repair the infarcted myocardium? Circulation 102: 56 – 61.en_US
dc.identifier.citedreferenceLevenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz‐Eldor J, Langer R. 2003. Differentiation of human embryonic stem cells on three‐dimensional polymer scaffolds. Proc Natl Acad Sci USA 100: 12741 – 12746.en_US
dc.identifier.citedreferenceLi HY, Chen YF, Xie YS. 2004. Nanocomposites of cross‐linking polyanhydrides and hydroxyapatite needles: mechanical and degradable properties. Mater Lett 58: 2819 – 2823.en_US
dc.identifier.citedreferenceLi QW, Chow AB, Mattingly RR. 2010. Three‐dimensional overlay culture models of human breast cancer reveal a critical sensitivity to mitogen‐activated protein kinase kinase inhibitors. J Pharmacol Exp Ther 332: 821 – 828.en_US
dc.identifier.citedreferenceLi JJ, Dou Y, Yang J, Yin YJ, Zhang H, Yao FL, Wang HB, Yao KD. 2009. Surface characterization and biocompatibility of micro‐ and nano‐hydroxyapatite/chitosan‐gelatin network films. Mater Sci Eng C Biomimetic Supramol Syst 29: 1207 – 1215.en_US
dc.identifier.citedreferenceLi ZQ, Guo XL, Matsushita S, Guan JJ. 2011. Differentiation of cardiosphere‐derived cells into a mature cardiac lineage using biodegradable poly(N‐isopropylacrylamide) hydrogels. Biomaterials 32: 3220 – 3232.en_US
dc.identifier.citedreferenceLiao GY, Chen LA, Zeng XY, Zhou XP, Xie XL, Peng EJ, Ye ZQ, Mai YW. 2011. Electrospun poly(l‐lactide)/poly(epsilon‐caprolactone) blend fibers and their cellular response to adipose‐derived stem cells. J App Polym Sci 120: 2154 – 2165.en_US
dc.identifier.citedreferenceLiao JH, Guo XA, Nelson D, Kasper FK, Mikos AG. 2010. Modulation of osteogenic properties of biodegradable polymer/extracellular matrix scaffolds generated with a flow perfusion bioreactor. Acta Biomater 6: 2386 – 2393.en_US
dc.identifier.citedreferenceLim HL, Chuang JC, Tuan T, Aung A, Arya G, Varghese S. 2011. Dynamic electromechanical hydrogel matrices for stem cell culture. Adv Funct Mater 21: 55 – 63.en_US
dc.identifier.citedreferenceLinez‐Bataillon P, Monchau F, Bigerelle M, Hildebrand HF. 2002. In vitro MC3T3 osteoblast adhesion with respect to surface roughness of Ti6A14V substrates. Biomol Eng 19: 133 – 141.en_US
dc.identifier.citedreferenceLiu XA, Chen J, Gilmore KJ, Higgins MJ, Liu Y, Wallace GG. 2010a. Guidance of neurite outgrowth on aligned electrospun polypyrrole/poly(styrene‐beta‐isobutylene‐beta‐styrene) fiber platforms. J Biomed Mater Res A 94A: 1004 – 1011.en_US
dc.identifier.citedreferenceLiu SQ, Tay R, Khan M, Ee PLR, Hedrick JL, Yang YY. 2010b. Synthetic hydrogels for controlled stem cell differentiation. Soft Matter 6: 67 – 81.en_US
dc.identifier.citedreferenceLiu SQ, Tian QA, Wang L, Hedrick JL, Hui JHP, Yang YY, Ee PLR. 2010c. Injectable biodegradable poly(ethylene glycol)/RGD peptide hybrid hydrogels for in vitro chondrogenesis of human mesenchymal stem cells. Macromol Rapid Commun 31: 1148 – 1154.en_US
dc.identifier.citedreferenceLiu Y, Vrana NE, Cahill PA, McGuinness GB. 2009. Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J Biomed Mater Res B 90B: 492 – 502.en_US
dc.identifier.citedreferenceLiu Y, Wang XT, Kaufman DS, Shen W. 2011. A synthetic substrate to support early mesodermal differentiation of human embryonic stem cells. Biomaterials 32: 8058 – 8066.en_US
dc.identifier.citedreferenceLiu LQ, Wu W, Tuo XY, Geng WX, Zhao J, Wei J, Yan XR, Yang W, Li LW, Chen FL. 2010d. Novel strategy to engineer trachea cartilage graft with marrow mesenchymal stem cell macroaggregate and hydrolyzable scaffold. Artif Organs 34: 426 – 433.en_US
dc.identifier.citedreferenceLohmann CH, Bonewald LF, Sisk MA, Sylvia VL, Cochran DL, Dean DD, Boyan BD, Schwartz Z. 2000. Maturation state determines the response of osteogenic cells to surface roughness and 1,25‐dihydroxyvitamin D‐3. J Bone Miner Res 15: 1169 – 1180.en_US
dc.identifier.citedreferenceLu Z, Doulabi BZ, Huang C, Bank RA, Helder MN. 2010. Collagen type II enhances chondrogenesis in adipose tissue‐derived stem cells by affecting cell shape. Tissue Eng A 16: 81 – 90.en_US
dc.identifier.citedreferenceLundin V, Herland A, Berggren M, Jager EWH, Teixeira AI. 2011. Control of neural stem cell survival by electroactive polymer substrates. PLoS One 6: e18624.en_US
dc.identifier.citedreferenceLuong LN, Hong SI, Patel RJ, Outslay ME, Kohn DH. 2006. Spatial control of protein within biomimetically nucleated mineral. Biomaterials 27: 1175 – 1186.en_US
dc.identifier.citedreferenceLuong LN, McFalls KM, Kohn DH. 2009. Gene delivery via DNA incorporation within a biomimetic apatite coating. Biomaterials 30: 6996 – 7004.en_US
dc.identifier.citedreferenceMa N, Stamm C, Kaminski A, Li WZ, Kleine HD, Muller‐Hilke B, Zhang L, Ladilov Y, Egger D, Steinhoff G. 2005. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid‐mice. Cardiovasc Res 66: 45 – 54.en_US
dc.identifier.citedreferenceMahairaki V, Lim SH, Christopherson GT, Xu LY, Nasonkin I, Yu C, Mao HQ, Koliatsos VE. 2011. Nanofiber matrices promote the neuronal differentiation of human embryonic stem cell‐derived neural precursors in vitro. Tissue Eng A 17: 855 – 863.en_US
dc.identifier.citedreferenceMarinucci L, Balloni S, Becchetti E, Belcastro S, Guerra M, Calvitti M, Lilli C, Calvi EM, Locci P. 2006. Effect of titanium surface roughness on human osteoblast proliferation and gene expression in vitro. Int Journal of Oral Maxillofac Implants 21: 719 – 725.en_US
dc.identifier.citedreferenceMarklein RA, Burdick JA. 2010. Controlling stem cell fate with material design. Adv Mater 22: 175 – 189.en_US
dc.identifier.citedreferenceMassia SP, Hubbell JA. 1991a. Human endothelial‐cell interactions with surface‐coupled adhesion peptides on a nonadhesive glass substrate and 2 polymeric biomaterials. J Biomed Mater Res 25: 223 – 242.en_US
dc.identifier.citedreferenceMassia SP, Hubbell JA. 1991b. An Rgd spacing of 440nm is sufficient for integrin alpha‐V‐beta‐3‐mediated fibroblast spreading and 140nm for focal contact and stress fiber formation. J Cell Biol 114: 1089 – 1100.en_US
dc.identifier.citedreferenceMeinhart JG, Schense JC, Schima H, Gorlitzer M, Hubbell JA, Deutsch M, Zilla P. 2005. Enhanced endothelial cell retention on shear‐stressed synthetic vascular grafts precoated with RGD‐cross‐linked fibrin. Tissue Eng 11: 887 – 895.en_US
dc.identifier.citedreferenceMiyajima H, Matsumoto T, Sakai T, Yamaguchi S, An SH, Abe M, Wakisaka S, Lee KY, Egusa H, Imazato S. 2011. Hydrogel‐based biomimetic environment for in vitro modulation of branching morphogenesis. Biomaterials 32: 6754 – 6763.en_US
dc.identifier.citedreferenceMohan N, Nair PD, Tabata Y. 2010. Growth factor‐mediated effects on chondrogenic differentiation of mesenchymal stem cells in 3D semi‐IPN poly(vinyl alcohol)‐poly(caprolactone) scaffolds. J Biomed Mater Res A 94A: 146 – 159.en_US
dc.identifier.citedreferenceMorgan AW, Roskov KE, Lin‐Gibson S, Kaplan DL, Becker ML, Simon CG. 2008. Characterization and optimization of RGD‐containing silk blends to support osteoblastic differentiation. Biomaterials 29: 2556 – 2563.en_US
dc.identifier.citedreferenceMoura RM, de Queiroz AAA. 2011. Dendronized polyaniline nanotubes for cardiac tissue engineering. Artif Organs 35: 471 – 477.en_US
dc.identifier.citedreferenceMoutos FT, Estes BT, Guilak F. 2010. Multifunctional hybrid three‐dimensionally woven scaffolds for cartilage tissue engineering. Macromol Biosci 10: 1355 – 1364.en_US
dc.identifier.citedreferenceMurphy WL, Hsiong S, Richardson TP, Simmons CA, Mooney DJ. 2005. Effects of a bone‐like mineral film on phenotype of adult human mesenchymal stem cells in vitro. Biomaterials 26: 303 – 310.en_US
dc.identifier.citedreferenceMurphy WL, Peters MC, Kohn DH, Mooney DJ. 2000. Sustained release of vascular endothelial growth factor from mineralized poly(lactide‐co‐glycolide) scaffolds for tissue engineering. Biomaterials 21: 2521 – 2527.en_US
dc.identifier.citedreferenceNaing MW, Williams DJ. 2011. Three‐dimensional culture and bioreactors for cellular therapies. Cytotherapy 13: 391 – 399.en_US
dc.identifier.citedreferenceNatarajan A, Chun CJ, Hickman JJ, Molnar P. 2008. Growth and electrophysiological properties of rat embryonic cardiomyocytes on hydroxyl‐ and carboxyl‐modified surfaces. J Biomat Sci Polym Ed 19: 1319 – 1331.en_US
dc.identifier.citedreferenceNisbet DR, Forsythe JS, Shen W, Finkelstein DI, Horne MK. 2009. Review paper: a review of the cellular response on electrospun nanofibers for tissue engineering. J Biomater Appl 24: 7 – 29.en_US
dc.identifier.citedreferencePan LJ, Ren YJ, Cui FZ, Xu QY. 2009. Viability and differentiation of neural precursors on hyaluronic acid hydrogel scaffold. J Neurosci Res 87: 3207 – 3220.en_US
dc.identifier.citedreferencePant HR, Neupane MP, Pant B, Panthi G, Oh HJ, Lee MH, Kim HY. 2011. Fabrication of highly porous poly (epsilon‐caprolactone) fibers for novel tissue scaffold via water‐bath electrospinning. Colloid Surface B 88: 587 – 592.en_US
dc.identifier.citedreferencePark JS, Chu JS, Tsou AD, Diop R, Tang ZY, Wang AJ, Li S. 2011a. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF‐beta. Biomaterials 32: 3921 – 3930.en_US
dc.identifier.citedreferencePark J, Lim E, Back S, Na H, Park Y, Sun K. 2010. Nerve regeneration following spinal cord injury using matrix metalloproteinase‐sensitive, hyaluronic acid‐based biomimetic hydrogel scaffold containing brain‐derived neurotrophic factor. J Biomed Mater Res A 93A: 1091 – 1099.en_US
dc.identifier.citedreferencePark JS, Yang HN, Woo DG, Jeon SY, Do HJ, Lim HY, Kim JH, Park KH. 2011b. Chondrogenesis of human mesenchymal stem cells mediated by the combination of SOX trio SOX5, 6, and 9 genes complexed with PEI‐modified PLGA nanoparticles. Biomaterials 32: 3679 – 3688.en_US
dc.identifier.citedreferencePei Y, Zhang LN, Wang HY, Zhang XZ, Xu M. 2011. Supermolecular structure and properties of cellulose/gelatin composite films. Acta Polym Sin 9: 1098 – 1104.en_US
dc.identifier.citedreferencePek YS, Wan ACA, Ying JY. 2010. The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials 31: 385 – 391.en_US
dc.identifier.citedreferencePetrie TA, Raynor JE, Reyes CD, Burns KL, Collard DM, Garcia AJ. 2008. The effect of integrin‐specific bioactive coatings on tissue healing and implant osseointegration. Biomaterials 29: 2849 – 2857.en_US
dc.identifier.citedreferencePeyton SR, Kim PD, Ghajar CM, Seliktar D, Putnam AJ. 2008. The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3‐D biosynthetic hydrogel system. Biomaterials 29: 2597 – 2607.en_US
dc.identifier.citedreferencePhillips JE, Burns KL, Le Doux JM, Guldberg RE, Garcia AJ. 2008. Engineering graded tissue interfaces. Proc Natl Acad Sci USA 105: 12170 – 12175.en_US
dc.identifier.citedreferencePonader S, Vairaktaris E, Heinl P, Wilmowsky CV, Rottmair A, Koerner C, Singer RF, Holst S, Schlegel KA, Neukarn FW, Nkenke E. 2008. Effects of topographical surface modifications of electron beam melted Ti‐6Al‐4V titanium on human fetal osteoblasts. JBiomed Mater Res A 84A: 1111 – 1119.en_US
dc.identifier.citedreferenceQiu Y, Park K. 2001. Environment‐sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53: 321 – 339.en_US
dc.identifier.citedreferenceRagetly G, Griffon DJ, Chung YS. 2010. The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis. Acta Biomater 6: 3988 – 3997.en_US
dc.identifier.citedreferenceRanella A, Barberoglou M, Bakogianni S, Fotakis C, Stratakis E. 2010. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater 6: 2711 – 2720.en_US
dc.identifier.citedreferenceRe'em T, Tsur‐Gang O, Cohen S. 2010. The effect of immobilized RGD peptide in macroporous alginate scaffolds on TGF beta 1‐induced chondrogenesis of human mesenchymal stem cells. Biomaterials 31: 6746 – 6755.en_US
dc.identifier.citedreferenceRen YJ, Zhou ZY, Cui FZ. 2009. Hyaluronic acid/polylysine hydrogel as a transfer system for transplantation of neural stem cells. J Bioact Compat Polym 24: 56 – 62.en_US
dc.identifier.citedreferenceReyes CD, Petrie TA, Burns KL, Schwartz Z, Garcia AJ. 2007. Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials 28: 3228 – 3235.en_US
dc.identifier.citedreferenceRichardson TP, Murphy WL, Mooney DJ. 2001. Polymeric delivery of proteins and plasmid DNA for tissue engineering and gene therapy. Crit Rev Eukaryot Gene Expr 11: 47 – 58.en_US
dc.identifier.citedreferenceRnjak‐Kovacina J, Wise SG, Li Z, Maitz PKM, Young CJ, Wang YW, Weiss AS. 2011. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials 32: 6729 – 6736.en_US
dc.identifier.citedreferenceRobinson L, Isaksson J, Robinson ND, Berggren M. 2006. Electrochemical control of surface wettability of poly(3‐alkylthiophenes). Surface Sci 600: L148 – L152.en_US
dc.identifier.citedreferenceRocha PM, Santo VE, Gomes ME, Reis RL, Mano JF. 2011. Encapsulation of adipose‐derived stem cells and transforming growth factor‐beta 1 in carrageenan‐based hydrogels for cartilage tissue engineering. J Bioact Compat Polym 26: 493 – 507.en_US
dc.identifier.citedreferenceRoether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jerome R. 2002. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass (R) for tissue engineering applications. Biomaterials 23: 3871 – 3878.en_US
dc.identifier.citedreferenceRossello RA, Wang Z, Kizana E, Krebsbach PH, Kohn DH. 2009. Connexin 43 as a signaling platform for increasing the volume and spatial distribution of regenerated tissue. Proc Natl Acad Sci USA 106: 13219 – 13224.en_US
dc.identifier.citedreferenceSaha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE. 2008. Substrate modulus directs neural stem cell behavior. Biophys J 95: 4426 – 4438.en_US
dc.identifier.citedreferenceSa‐Lima H, Tuzlakoglu K, Mano JF, Reis RL. 2011. Thermoresponsive poly(N‐isopropylacrylamide)‐g‐methylcellulose hydrogel as a three‐dimensional extracellular matrix for cartilage‐engineered applications. J Biomed Mater Res A 98A: 596 – 603.en_US
dc.identifier.citedreferenceSchek RM, Taboas JM, Segvich SJ, Hollister SJ, Krebsbach PH. 2004. Engineered osteochondral grafts using biphasic composite solid free‐form fabricated scaffolds. Tissue Eng 10: 1376 – 1385.en_US
dc.identifier.citedreferenceSchrader J, Gordon‐Walker TT, Aucott RL, van Deemter M, Quaas A, Walsh S, Benten D, Forbes SJ, Wells RG, Iredale JP. 2011. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology 53: 1192 – 1205.en_US
dc.identifier.citedreferenceSegvich S, Biswas S, Becker U, Kohn DH. 2009a. Identification of peptides with targeted adhesion to bone‐like mineral via phage display and computational modeling. Cells Tissues Organs 189: 245 – 251.en_US
dc.identifier.citedreferenceSegvich S, Kohn DH. 2009. Phage Display as a Strategy for Designing Organic/Inorganic Biomaterials. Biological Interactions on Materials Surfaces: Understanding and Controlling Protein, Cell, and Tissue Responses. New York: Springer. p 115 – 132.en_US
dc.identifier.citedreferenceSegvich SJ, Smith HC, Kohn DH. 2009b. The adsorption of preferential binding peptides to apatite‐based materials. Biomaterials 30: 1287 – 1298.en_US
dc.identifier.citedreferenceSegvich S, Smith HC, Luong LN, Kohn DH. 2008. Uniform deposition of protein incorporated mineral layer on three‐dimensional porous polymer scaffolds. J Biomed Mater Res B 84B: 340 – 349.en_US
dc.identifier.citedreferenceShanbhag MS, Lathia JD, Mughal MR, Francis NL, Pashos N, Mattson MP, Wheatley MA. 2010. Neural progenitor cells grown on hydrogel surfaces respond to the product of the transgene of encapsulated genetically engineered fibroblasts. Biomacromolecules 11: 2936 – 2943.en_US
dc.identifier.citedreferenceShapira‐Schweitzer K, Habib M, Gepstein L, Seliktar D. 2009. A photopolymerizable hydrogel for 3‐D culture of human embryonic stem cell‐derived cardiomyocytes and rat neonatal cardiac cells. J Mol Cell Cardiol 46: 213 – 224.en_US
dc.identifier.citedreferenceSharma B, Williams CG, Khan M, Manson P, Elisseeff JH. 2007. In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast Reconstr Surg 119: 112 – 120.en_US
dc.identifier.citedreferenceShin YM, Kim KS, Lim YM, Nho YC, Shin H. 2008. Modulation of spreading, proliferation, and differentiation of human mesenchymal stem cells on gelatin‐immobilized poly(L‐lactide‐co‐epsilon‐caprolactone) substrates. Biomacromolecules 9: 1772 – 1781.en_US
dc.identifier.citedreferenceShin JH, Lee JW, Jung JH, Cho DW, Lim G. 2011. Evaluation of cell proliferation and differentiation on a poly(propylene fumarate) 3D scaffold treated with functional peptides. JMater Sci 46: 5282 – 5287.en_US
dc.identifier.citedreferenceSingh D, Tripathi A, Nayak V, Kumar A. 2011. Proliferation of chondrocytes ona 3‐D modelled macroporous poly (hydroxyethyl methacrylate)‐gelatin cryogel. J Biomat Sci Polym Ed 22: 1733 – 1751.en_US
dc.identifier.citedreferenceSpiller KL, Holloway JL, Gribb ME, Lowman AM. 2011. Design of semi‐degradable hydrogels based on poly(vinyl alcohol) and poly(lactic‐co‐glycolic acid) for cartilage tissue engineering. J Tissue Eng Regen Med 5: 636 – 647.en_US
dc.identifier.citedreferenceSteinmetz NJ, Bryant SJ. 2011. The effects of intermittent dynamic loading on chondrogenic and osteogenic differentiation of human marrow stromal cells encapsulated in RGD‐modified poly(ethylene glycol) hydrogels. Acta Biomater 7: 3829 – 3840.en_US
dc.identifier.citedreferenceSubramanian A, Krishnan UM, Sethuraman S. 2009. Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J Biomed Sci 16: 108 – 119.en_US
dc.identifier.citedreferenceTaboas JM, Maddox RD, Krebsbach PH, Hollister SJ. 2003. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer‐ceramic scaffolds. Biomaterials 24: 181 – 194.en_US
dc.identifier.citedreferenceThonhoff JR, Lou DI, Jordan PM, Zhao X, Wu P. 2008. Compatibility of human fetal neural stem cells with hydrogel biomaterials in vitro. Brain Res 1187: 42 – 51.en_US
dc.identifier.citedreferenceThorp BH, Anderson I, Jakowlew SB. 1992. Transforming growth factor‐beta‐1, factor‐beta‐2 and factor‐beta‐3 in cartilage and bone‐cells during endochondral ossification in the chick. Development 114: 907 – 911.en_US
dc.identifier.citedreferenceTian WM, Zhang CL, Hou SP, Yu X, Cui FZ, Xu QY, Sheng SL, Cui H, Li HD. 2005. Hyaluronic acid hydrogel as Nogo‐66 receptor antibody delivery system for the repairing of injured rat brain: in vitro. J Controlled Release 102: 13 – 22.en_US
dc.identifier.citedreferenceTobias CA, Dhoot NO, Wheatley MA, Tessler A, Murray M, Fischer I. 2001. Grafting of encapsulated BDNF‐producing fibroblasts into the injured spinal cord without immune suppression in adult rats. J Neurotrauma 18: 287 – 301.en_US
dc.identifier.citedreferenceToh WS, Lee EH, Guo XM, Chan JKY, Yeow CH, Choo AB, Cao T. 2010. Cartilage repair using hyaluronan hydrogel‐encapsulated human embryonic stem cell‐derived chondrogenic cells. Biomaterials 31: 6968 – 6980.en_US
dc.identifier.citedreferenceTuszynski MH, Grill R, Jones LL, Brant A, Blesch A, Low K, Lacroix S, Lu P. 2003. NT‐3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection. Exp Neurol 181: 47 – 56.en_US
dc.identifier.citedreferenceVandeVondele S, Voros J, Hubbell JA. 2003. RGD‐grafted poly‐l‐lysine‐graft‐(polyethylene glycol) copolymers block non‐specific protein adsorption while promoting cell adhesion. Biotechnol Bioeng 82: 784 – 790.en_US
dc.identifier.citedreferenceVandrovcova M, Bacakova L. 2011. Adhesion, growth and differentiation of osteoblasts on surface‐modified materials developed for bone implants. Physiol Res 60: 403 – 417.en_US
dc.identifier.citedreferenceVenugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S. 2008. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Artif Organs 32: 388 – 397.en_US
dc.identifier.citedreferenceVenugopal J, Prabhakaran MP, Zhang YZ, Low S, Choon AT, Ramakrishna S. 2010. Biomimetic hydroxyapatite‐containing composite nanofibrous substrates for bone tissue engineering. Philos Trans R Soc A Math Phys Eng Sci 368: 2065 – 2081.en_US
dc.identifier.citedreferenceVergroesen PPA, Kroeze RJ, Helder MN, Smit TH. 2011. The Use of poly(L‐lactide‐co‐caprolactone) as a scaffold for adipose stem cells in bone tissue engineering: application in a spinal fusion model. Macromol Biosci 11: 722 – 730.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.