Show simple item record

Open‐field arena boundary is a primary object of exploration for Drosophila

dc.contributor.authorSoibam, Benjaminen_US
dc.contributor.authorMann, Monicaen_US
dc.contributor.authorLiu, Lingzhien_US
dc.contributor.authorTran, Jessicaen_US
dc.contributor.authorLobaina, Milenaen_US
dc.contributor.authorKang, Yuan Yuanen_US
dc.contributor.authorGunaratne, Gemunu H.en_US
dc.contributor.authorPletcher, Scott D.en_US
dc.contributor.authorRoman, Greggen_US
dc.date.accessioned2012-04-04T18:43:59Z
dc.date.available2013-05-01T17:24:44Zen_US
dc.date.issued2012-03en_US
dc.identifier.citationSoibam, Benjamin; Mann, Monica; Liu, Lingzhi; Tran, Jessica; Lobaina, Milena; Kang, Yuan Yuan; Gunaratne, Gemunu H.; Pletcher, Scott; Roman, Gregg (2012). "Open‐field arena boundary is a primary object of exploration for Drosophila ." Brain and Behavior 2(2). <http://hdl.handle.net/2027.42/90592>en_US
dc.identifier.issn2162-3279en_US
dc.identifier.issn2162-3279en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90592
dc.description.abstractDrosophila adults, when placed into a novel open‐field arena, initially exhibit an elevated level of activity followed by a reduced stable level of spontaneous activity and spend a majority of time near the arena edge, executing motions along the walls. In order to determine the environmental features that are responsible for the initial high activity and wall‐following behavior exhibited during exploration, we examined wild‐type and visually impaired mutants in arenas with different vertical surfaces. These experiments support the conclusion that the wall‐following behavior of Drosophila is best characterized by a preference for the arena boundary, and not thigmotaxis or centrophobicity. In circular arenas, Drosophila mostly move in trajectories with low turn angles. Since the boundary preference could derive from highly linear trajectories, we further developed a simulation program to model the effects of turn angle on the boundary preference. In an hourglass‐shaped arena with convex‐angled walls that forced a straight versus wall‐following choice, the simulation with constrained turn angles predicted general movement across a central gap, whereas Drosophila tend to follow the wall. Hence, low turn angled movement does not drive the boundary preference. Lastly, visually impaired Drosophila demonstrate a defect in attenuation of the elevated initial activity. Interestingly, the visually impaired w 1118 activity decay defect can be rescued by increasing the contrast of the arena's edge, suggesting that the activity decay relies on visual detection of the boundary. The arena boundary is, therefore, a primary object of exploration for Drosophila . In an open field arena, Drosophila spend the majority of time at the arena boundary even when additional vertical surfaces are present in the interior. The visually impaired white files have defects in the attenuation of exploratory activity. by increasing the contrast of the boundary, we can rescue this defect in white mutants, demonstrating that the boundary is a primary object of exploration in an open field arena.en_US
dc.publisherBlackwell Publishing Incen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAnxietyen_US
dc.subject.otherThigmotaxisen_US
dc.subject.otherExploratory Activityen_US
dc.subject.otherDrosophilaen_US
dc.subject.otherCentrophobicityen_US
dc.titleOpen‐field arena boundary is a primary object of exploration for Drosophilaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurology and Neurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan Geriatrics Center, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 49108en_US
dc.contributor.affiliationotherDepartment of Computer Science, University of Houston, Houston, Texas 77204en_US
dc.contributor.affiliationotherBiology of Behavior Institute, University of Houston, Houston, Texas 77204en_US
dc.contributor.affiliationotherDepartment of Physics, University of Houston, Houston, Texas 77204en_US
dc.contributor.affiliationotherDepartment of Natural Sciences, University of Houston Downtown, Houston, Texas 77002en_US
dc.contributor.affiliationotherDepartment of Biology and Biochemistry, University of Houston, Houston, Texas 77204en_US
dc.identifier.pmid22574279en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90592/1/brb3.36.pdf
dc.identifier.doi10.1002/brb3.36en_US
dc.identifier.sourceBrain and Behavioren_US
dc.identifier.citedreferenceHinde, R. A. 1954. Factors governing the changes in strength of a partially inborn response, as shown by the mobbing behaviour of the chaffinch ( Fringilla coelebs ). I. The nature of the response, and an examination of its course. Proc. R Soc. Lond. B Biol. Sci. 142: 306 – 331.en_US
dc.identifier.citedreferenceBell, W. 1990. Searching behaviour: the behavioural ecology of finding resources. Chapman and Hall Ltd., New York.en_US
dc.identifier.citedreferenceBerlyne, D. E. 1966. Curiosity and exploration. Science 153: 25 – 33.en_US
dc.identifier.citedreferenceBesson, M., and J. R. Martin. 2005. Centrophobism/thigmotaxis, a new role for the mushroom bodies in Drosophila. J. Neurobiol. 62: 386 – 396.en_US
dc.identifier.citedreferenceBorycz, J., J. A. Borycz, A. Kubow, V. Lloyd, and I. A. Meinertzhagen. 2008. Drosophila ABC transporter mutants white, brown and scarlet have altered contents and distribution of biogenic amines in the brain. J. Exp. Biol. 211: 3454 – 3466.en_US
dc.identifier.citedreferenceCardenas, F., M. R. Lamprea, and S. Morato. 2001. Vibrissal sense is not the main sensory modality in rat exploratory behavior in the elevated plus‐maze. Behav. Brain. Res. 122: 169 – 174.en_US
dc.identifier.citedreferenceChance, M. R. A., and A. P. Mead. 1955. Competition between feeding and investigation in the rat. Behaviour 8: 174 – 181.en_US
dc.identifier.citedreferenceCholeris, E., A. W. Thomas, M. Kavaliers, and F. S. Prato. 2001. A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci. Biobehav. Rev. 25: 235 – 260.en_US
dc.identifier.citedreferenceConnolly, K. 1967. Locomotor activity in Drosophila. 3. A distinction between activity and reactivity. Anim. Behav. 15: 149 – 152.en_US
dc.identifier.citedreferenceCreed, R. P., and J. R. Miller. 1990. Interpreting animal wall‐following behavior Cel. Mol. Life Sci. 46: 758 – 761.en_US
dc.identifier.citedreferenceCrusio, W. E., and J. H. Van Abeelen. 1986. The genetic architecture of behavioural responses to novelty in mice. Heredity 56: 55 – 63.en_US
dc.identifier.citedreferenceEdut, S., and D. Eilam. 2004. Protean behavior under barn‐owl attack: voles alternate between freezing and fleeing and spiny mice flee in alternating patterns. Behav. Brain Res. 155: 207 – 216.en_US
dc.identifier.citedreferenceEilam, D. 2003. Open‐field behavior withstands drastic changes in arena size. Behav. Brain Res. 142: 53 – 62.en_US
dc.identifier.citedreferenceEilam, D. 2004. Locomotor activity in common spiny mice ( Acomys cahirinuse ): the effect of light and environmental complexity. BMC Ecol. 4: 16 – 25.en_US
dc.identifier.citedreferenceEilam, D. 2005. Die hard: a blend of freezing and fleeing as a dynamic defense—implications for the control of defensive behavior. Neurosci. Biobehav. Rev. 29: 1181 – 1191.en_US
dc.identifier.citedreferenceEnnaceur, A., S. Michalikova, and P. L. Chazot. 2006. Models of anxiety: responses of rats to novelty in an open space and an enclosed space. Behav. Brain Res. 171: 26 – 49.en_US
dc.identifier.citedreferenceFuruichi, N. 2002. Dynamics between a predator and a prey switching two kinds of escape motions. J. Theor. Biol. 217: 159 – 166.en_US
dc.identifier.citedreferenceGotz, K. G., and R. Biesinger. 1985. Centrophobism in Drosophila melanogaster.2. Physiological approach to search and search control. J. Comp. Physiol. A Sensory Neural Behav. Physiol. 156: 329 – 337.en_US
dc.identifier.citedreferenceGotz, K. G. 1994. Exploratory strategies in Drosophila. Fischer, Stuttgart.en_US
dc.identifier.citedreferenceHardie, R. C. 1987. Is histamine a neurotransmitter in insect photoreceptors? J. Comp. Physiol. A 161: 201 – 213.en_US
dc.identifier.citedreferenceHarris, W. A., and W. S. Stark. 1977. Hereditary retinal degeneration in Drosophila melanogaster. A mutant defect associated with the phototransduction process. J. Gen. Physiol. 69: 261 – 291.en_US
dc.identifier.citedreferenceHengstenberg, R., and K. G. Gotz. 1967. Effect of facet‐separating pigments on the perception of light and contrast in eye mutants of Drosophila. Kybernetik 3: 276 – 285.en_US
dc.identifier.citedreferenceKalmus, H. 1948. The optimotor responses of some eye mutants of Drosophila. J. Genet. 45: 206 – 213.en_US
dc.identifier.citedreferenceLiu, L., R. L. Davis, and G. Roman. 2007. Exploratory activity in Drosophila requires the kurtz nonvisual arrestin. Genetics 175: 1197 – 1212.en_US
dc.identifier.citedreferenceMeehan, M. J., and R. Wilson. 1987. Locomotor activity in the Tyr‐1 mutant of Drosophila melanogaster. Behav. Genet. 17: 503 – 512.en_US
dc.identifier.citedreferenceMorato, S., and P. Castrechini. 1989. Effects of floor surface and environmental illumination on exploratory activity in the elevated plus‐maze. Braz. J. Med. Biol. Res. 22: 707 – 710.en_US
dc.identifier.citedreferencePavlov, I. P., and G.V. Anrep. 1927. Conditioned reflexes; an investigation of the physiological activity of the cerebral cortex. Oxford Univ. Press, Humphrey Milford, [London].en_US
dc.identifier.citedreferenceRiemensperger, T., G. Isabel, H. Coulom, K. Neuser, L. Seugnet, K. Kume, M. Iche‐Torres, M. Cassar, R. Strauss, T. Preat, et al. 2011. Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc. Natl. Acad. Sci. USA 108: 834 – 839.en_US
dc.identifier.citedreferenceSimon, P., R. Dupuis, and J. Costentin. 1994. Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res 61: 59 – 64.en_US
dc.identifier.citedreferenceSitaraman, D., M. Zars, H. Laferriere, Y. C. Chen, A. Sable‐Smith, T. Kitamoto, G. E. Rottinghaus, and T. Zars. 2008. Serotonin is necessary for place memory in Drosophila. Proc. Natl. Acad. Sci. USA 105: 5579 – 5584.en_US
dc.identifier.citedreferenceStrauss, R., and M. Heisenberg. 1990. Coordination of legs during straight walking and turning in Drosophila melanogaster. J. Comp. Physiol. A 167: 403 – 412.en_US
dc.identifier.citedreferenceTreit, D., and M. Fundytus. 1988. Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol. Biochem. Behav. 31: 959 – 962.en_US
dc.identifier.citedreferenceValente, D., I. Golani, and P. P. Mitra. 2007. Analysis of the trajectory of Drosophila melanogaster in a circular open field arena. PLoS ONE 2: e1083.en_US
dc.identifier.citedreferenceZimbardo, P. G., and K. C. Montgomery. 1957. Effects of free‐environment rearing upon exploratory‐behavior. Psychol. Rep. 3: 589 – 594.en_US
dc.identifier.citedreferenceArchard, G. A., and V. A. Braithwaite. 2011. Increased exposure to predators increases both exploration and activity level in Brachyrhaphis episcopi. J. Fish Biol. 78: 593 – 601.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.