Show simple item record

384 hanging drop arrays give excellent Z ‐factors and allow versatile formation of co‐culture spheroids

dc.contributor.authorHsiao, Amy Yu-Chingen_US
dc.contributor.authorTung, Yi‐chungen_US
dc.contributor.authorQu, Xiangguien_US
dc.contributor.authorPatel, Lalit R.en_US
dc.contributor.authorPienta, Kenneth J.en_US
dc.contributor.authorTakayama, Shuichien_US
dc.date.accessioned2012-04-04T18:44:12Z
dc.date.available2013-06-11T19:15:47Zen_US
dc.date.issued2012-05en_US
dc.identifier.citationHsiao, Amy Y.; Tung, Yi‐chung ; Qu, Xianggui; Patel, Lalit R.; Pienta, Kenneth J.; Takayama, Shuichi (2012). "384 hanging drop arrays give excellent Z â factors and allow versatile formation of coâ culture spheroids." Biotechnology and Bioengineering 109(5): 1293-1304. <http://hdl.handle.net/2027.42/90601>en_US
dc.identifier.issn0006-3592en_US
dc.identifier.issn1097-0290en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/90601
dc.description.abstractWe previously reported the development of a simple, user‐friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti‐cancer drug sensitivity testing. The 384 hanging drop array plate allows for high‐throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell‐based high‐throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence‐ and colorimetric‐based assays through Z ‐factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. Biotechnol. Bioeng. 2012; 109:1293–1304. © 2011 Wiley Periodicals, Inc. This paper characterizes the robustness of the high‐throughput 384 hanging drop array spheroid formation and culture plate in terms of assay performance. The versatility of the platform was further demonstrated through 3D patterning of multiple cell types into concentric layers and as Janus spheroids. The system is envisioned to deliver valuable insights into 3D cellular behavior as well as more accurate readouts from 3D cell‐based high‐throughput screening and testing.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherHanging Dropen_US
dc.subject.otherSpheroiden_US
dc.subject.otherZ ‐Factoren_US
dc.subject.otherHigh‐Throughputen_US
dc.subject.other3Den_US
dc.title384 hanging drop arrays give excellent Z ‐factors and allow versatile formation of co‐culture spheroidsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbsecondlevelStatistics and Numeric Dataen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Urology, University of Michigan Medical School, Ann Arbor, Michiganen_US
dc.contributor.affiliationumMacro Molecular Science and Engineering, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, 2215 Carl A Gerstacker Bldg, 2200 Bonisteel Blvd, Ann Arbor, Michigan 48109; telephone: +1‐734‐615‐5539; fax: +1‐734‐936‐1905.en_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, 2215 Carl A Gerstacker Bldg, 2200 Bonisteel Blvd, Ann Arbor, Michigan 48109; telephone: +1‐734‐615‐5539; fax: +1‐734‐936‐1905en_US
dc.contributor.affiliationumDepartment of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherSchool of Nano‐Biotechnology and Chemical Engineering WCU Project, UNIST, Ulsan, Republic of Koreaen_US
dc.contributor.affiliationotherResearch Center for Applied Sciences, Academia Sinica, Taipei, Taiwanen_US
dc.contributor.affiliationotherDepartment of Mathematics and Statistics, Oakland University, Rochester, Michiganen_US
dc.identifier.pmid22161651en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/90601/1/24399_ftp.pdf
dc.identifier.doi10.1002/bit.24399en_US
dc.identifier.sourceBiotechnology and Bioengineeringen_US
dc.identifier.citedreferenceTamura T, Sakai Y, Nakazawa K. 2008. Two‐dimensional microarray of HepG2 spheroids using collagen/polyethylene glycol micropatterned chip. J Mater Sci Mater Med 19: 2071 – 2077.en_US
dc.identifier.citedreferenceToh YC, Lim TC, Tai D, Xiao G, van Noort D, Yu H. 2009. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip 9: 2026 – 2035.en_US
dc.identifier.citedreferenceFukuda J, Khademhosseini A, Yeo Y, Yang X, Yeh J, Eng G, Blumling J, Wang CF, Kohane DS, Langer R. 2006. Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co‐cultures. Biomaterials 27: 5259 – 5267.en_US
dc.identifier.citedreferenceHirschhaeuser F, Menne H, Dittfeld C, West J, Mueller‐Klieser W, Kunz‐Schughart LA. 2010. Multicellular tumor spheroids: An underestimated tool is catching up again. J Biotechnol 148: 3 – 15.en_US
dc.identifier.citedreferenceHsiao AY, Torisawa YS, Tung YC, Sud S, Taichman RS, Pienta KJ, Takayama S. 2009. Microfluidic system for formation of PC‐3 prostate cancer co‐culture spheroids. Biomaterials 30: 3020 – 3027.en_US
dc.identifier.citedreferenceIngram M, Techy GB, Saroufeem R, Yazan O, Narayan KS, Goodwin TJ, Spaulding GF. 1997. Three‐dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cell Dev Biol Anim 33: 459 – 466.en_US
dc.identifier.citedreferenceKalikin LM, Schneider A, Thakur MA, Fridman Y, Griffin LB, Dunn RL, Rosol TJ, Shah RB, Rehemtulla A, McCauley LK, Pienta KJ. 2003. In vivo visualization of metastatic prostate cancer and quantitation of disease progression in immunocompromised mice. Cancer Biol Ther 2: 656 – 660.en_US
dc.identifier.citedreferenceKarp JM, Yeh J, Eng G, Fukuda J, Blumling J, Suh KY, Cheng J, Mahdavi A, Borenstein J, Langer R, Khademhosseini A. 2007. Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip 7: 786 – 794.en_US
dc.identifier.citedreferenceKojima R, Yoshimoto K, Takahashi E, Ichino M, Miyoshi H, Nagasaki Y. 2009. Spheroid array of fetal mouse liver cells constructed on a PEG‐gel micropatterned surface: Upregulation of hepatic functions by co‐culture with nonparenchymal liver cells. Lab Chip 9: 1991 – 1993.en_US
dc.identifier.citedreferenceLee WG, Ortmann D, Hancock MJ, Bae H, Khademhosseini A. 2010. A hollow sphere soft lithography approach for long‐term hanging drop methods. Tissue Eng Part C Methods 16: 249 – 259.en_US
dc.identifier.citedreferenceLin RZ, Chang HY. 2008. Recent advances in three‐dimensional multicellular spheroid culture for biomedical research. Biotechnol J 3: 1172 – 1184.en_US
dc.identifier.citedreferencePowers MJ, Domansky K, Kaazempur‐Mofrad MR, Kalezi A, Capitano A, Upadhyaya A, Kurzawski P, Wack KE, Stolz DB, Kamm R, Griffith LG. 2002. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng 78: 257 – 269.en_US
dc.identifier.citedreferenceQu X. 2011. Design and analysis of high‐throughput screening experiments. J Syst Sci Complex 24: 711 – 724.en_US
dc.identifier.citedreferenceSakai Y, Nakazawa K. 2007. Technique for the control of spheroid diameter using microfabricated chips. Acta Biomater 3: 1033 – 1040.en_US
dc.identifier.citedreferenceShields K, Ackland ML, Ahmed N, Rice GE. 2009. Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynecol Oncol 113: 143 – 148.en_US
dc.identifier.citedreferenceSui Y, Wu Z. 2007. Alternative statistical parameter for high‐throughput screening assay quality assessment. J Biomol Screen 12: 229 – 234.en_US
dc.identifier.citedreferenceToh YC, Zhang C, Zhang J, Khong YM, Chang S, Samper VD, van Noort D, Hutmacher DW, Yu H. 2007. A novel 3D mammalian cell perfusion‐culture system in microfluidic channels. Lab Chip 7: 302 – 309.en_US
dc.identifier.citedreferenceZhang MY, Lee PJ, Hung PJ, Johnson T, Lee LP, Mofrad MR. 2008. Microfluidic environment for high density hepatocyte culture. Biomed Microdev 10: 117 – 121.en_US
dc.identifier.citedreferenceZhang JH, Chung TD, Oldenburg KR. 1999. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4: 67 – 73.en_US
dc.identifier.citedreferenceYoshii Y, Waki A, Yoshida K, Kakezuka A, Kobayashi M, Namiki H, Kuroda Y, Kiyono Y, Yoshii H, Furukawa T, Asai T, Okazawa H, Gelovani JG, Fujibayashi Y. 2011. The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well‐regulated spheroid formation. Biomaterials 32: 6052 – 6058.en_US
dc.identifier.citedreferenceYamada KM, Cukierman E. 2007. Modeling tissue morphogenesis and cancer in 3D. Cell 130: 601 – 610.en_US
dc.identifier.citedreferenceWu LY, DiCarlo D, Lee LP. 2008. Microfluidic self‐assembly of tumor spheroids for anticancer drug discovery. Biomed Microdev 10: 197 – 202.en_US
dc.identifier.citedreferenceWartenberg M, Donmez F, Ling FC, Acker H, Hescheler J, Sauer H. 2001. Tumor‐induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells. FASEB J 15: 995 – 1005.en_US
dc.identifier.citedreferenceUngrin MD, Joshi C, Nica A, Bauwens C, Zandstra PW. 2008. Reproducible, ultra high‐throughput formation of multicellular organization from single cell suspension‐derived human embryonic stem cell aggregates. PLoS ONE 3: e1565.en_US
dc.identifier.citedreferenceTung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S. 2011. High‐throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136: 473 – 478.en_US
dc.identifier.citedreferenceTorisawa YS, Mosadegh B, Luker GD, Morell M, O'Shea KS, Takayama S. 2009. Microfluidic hydrodynamic cellular patterning for systematic formation of co‐culture spheroids. Integr Biol 1: 649 – 654.en_US
dc.identifier.citedreferenceTorisawa YS, Takagi A, Nahimoto Y, Yasukawa T, Shiku H, Matsue T. 2007b. A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip. Biomaterials 28: 559 – 566.en_US
dc.identifier.citedreferenceTorisawa YS, Chueh BH, Huh D, Ramamurthy P, Roth TM, Barald KF, Takayama S. 2007a. Efficient synchronous formation of uniform‐sized embryoid bodies using a compartmentalized microchannel device. Lab Chip 7: 770 – 776.en_US
dc.identifier.citedreferenceBaraniak PR, McDevitt TC. 2011. Scaffold‐free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential. Cell Tissue Res. DOI: 10.1007/s00441‐011‐1215‐5.en_US
dc.identifier.citedreferenceBirmingham A, Selfors LM, Forster T, Wrobel D, Kennedy CJ, Shanks E, Santoyo‐Lopez J, Dunican DJ, Long A, Kelleher D, Smith Q, Beijersbergen RL, Ghazal P, Shamu CE. 2009. Statistical methods for analysis of high‐throughput RNA interference screens. Nat Methods 6: 569 – 575.en_US
dc.identifier.citedreferenceBratt‐Leal AM, Kepple KL, Carpenedo RL, Cooke MT, McDevitt TC. 2011. Magnetic manipulation and spatial patterning of multi‐cellular stem cell aggregates. Integr Biol 3: 1224 – 1232.en_US
dc.identifier.citedreferenceFriedrich J, Ebner R, Kunz‐Schughart LA. 2007. Experimental anti‐tumor therapy in 3‐D: Spheroids‐old hat or new challenge. Int J Radiat Biol 83: 849 – 871.en_US
dc.identifier.citedreferenceFriedrich J, Seidel C, Ebner R, Kunz‐Schughart LA. 2009. Spheroid‐based drug screen: Considerations and practical approach. Nat Protoc 4: 309 – 324.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.