Show simple item record

Increased L‐[1– 11 C] Leucine Uptake in the Leptomeningeal Angioma of Sturge‐Weber Syndrome: A PET Study

dc.contributor.authorAlkonyi, Bálinten_US
dc.contributor.authorChugani, Harry T.en_US
dc.contributor.authorMuzik, Ottoen_US
dc.contributor.authorChugani, Diane C.en_US
dc.contributor.authorSundaram, Senthil K.en_US
dc.contributor.authorKupsky, William J.en_US
dc.contributor.authorBatista, Carlos E.en_US
dc.contributor.authorJuhász, Csabaen_US
dc.date.accessioned2012-05-21T15:46:39Z
dc.date.available2013-06-11T19:15:45Zen_US
dc.date.issued2012-04en_US
dc.identifier.citationAlkonyi, Bálint ; Chugani, Harry T.; Muzik, Otto; Chugani, Diane C.; Sundaram, Senthil K.; Kupsky, William J.; Batista, Carlos E.; Juhász, Csaba (2012). "Increased Lâ [1â 11 C] Leucine Uptake in the Leptomeningeal Angioma of Sturgeâ Weber Syndrome: A PET Study." Journal of Neuroimaging 22(2). <http://hdl.handle.net/2027.42/91095>en_US
dc.identifier.issn1051-2284en_US
dc.identifier.issn1552-6569en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91095
dc.description.abstractBACKGROUND AND PURPOSE We used L‐[1– 11 C]leucine (LEU) positron emission tomography (PET) to measure amino acid uptake in children with Sturge‐Weber syndrome (SWS), and to relate amino acid uptake measures with glucose metabolism. METHODS LEU and 2‐deoxy‐2[ 18 F]fluoro‐D‐glucose (FDG) PET were performed in 7 children (age: 5 months‐13 years) with unilateral SWS. Asymmetries of LEU uptake in the posterior brain region, underlying the angioma and in frontal cortex, were measured and correlated with glucose hypometabolism. Kinetic analysis of LEU uptake was performed in 4 patients. RESULTS Increased LEU standard uptake value (SUV, mean: 15.1%) was found in the angioma region in 6 patients, and smaller increases in LEU SUV (11.5%) were seen in frontal cortex in 4 of the 6 patients, despite normal glucose metabolism in frontal regions. High LEU SUV was due to both increased tracer transport (3/4 patients) and high protein synthesis rates (2/4). FDG SUV asymmetries in the angioma region were inversely related to LEU SUV asymmetries ( r =–.83, P = .042). CONCLUSIONS Increased amino acid uptake in the angioma region and also in less affected frontal regions may provide a marker of pathological mechanisms contributing to chronic brain damage in children with SWS. J Neuroimaging 2012;22:177‐183.en_US
dc.publisherBlackwell Publishing Incen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherProliferationen_US
dc.subject.otherLeucineen_US
dc.subject.otherPositron Emission Tomographyen_US
dc.subject.otherSturge‐Weber Syndromeen_US
dc.subject.otherGlucose Metabolismen_US
dc.titleIncreased L‐[1– 11 C] Leucine Uptake in the Leptomeningeal Angioma of Sturge‐Weber Syndrome: A PET Studyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationotherFrom the Carman and Ann Adams Department of Pediatrics (BA, HTC, OM, DCC, SKS, CEB, CJ); Department of Neurology (HTC, SKS, CJ); Department of Pathology (WJK); and PET Center (BA, HTC, OM, DCC, SKS, CEB, CJ), Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI.en_US
dc.identifier.pmid21223431en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91095/1/j.1552-6569.2010.00565.x.pdf
dc.identifier.doi10.1111/j.1552-6569.2010.00565.xen_US
dc.identifier.sourceJournal of Neuroimagingen_US
dc.identifier.citedreferenceDi Trapani G, Di Rocco C, Abbamondi AL, et al. Light microscopy and ultrastructural studies of Sturge‐Weber disease. Childs Brain 1982; 9: 23 ‐ 36.en_US
dc.identifier.citedreferenceBatista C, Kupsky W, Chugani D, et al. Endothelial cell proliferation and angiogenesis in Sturge‐Weber syndrome. Ann Neurol 2008; 64 ( Suppl 12 ): 119 ‐ 120 [abstract.en_US
dc.identifier.citedreferenceNorman MG, Schoene WC. The ultrastructure of Sturge‐Weber disease. Acta Neuropathol 1977; 37: 199 ‐ 205.en_US
dc.identifier.citedreferenceJuhász C, Haacke EM, Hu J, et al. Multimodality imaging of cortical and white matter abnormalities in Sturge‐Weber syndrome. AJNR Am J Neuroradiol 2007; 28: 900 ‐ 906.en_US
dc.identifier.citedreferenceBarwick T, Bencherif B, Mountz JM, et al. Molecular PET and PET/CT imaging of tumour cell proliferation using F‐18 fluoro‐L‐thymidine: a comprehensive evaluation. Nucl Med Commun 2009; 30: 908 ‐ 917.en_US
dc.identifier.citedreferencePlathow C, Weber WA. Tumor cell metabolism imaging. J Nucl Med 2008; 49 ( Suppl 2 ): 43S ‐ 63S.en_US
dc.identifier.citedreferenceGiammarile F, Cinotti LE, Jouvet A, et al. High and low grade oligodendrogliomas (ODG): correlation of amino‐acid and glucose uptakes using PET and histological classifications. J Neurooncol 2004; 68: 263 ‐ 274.en_US
dc.identifier.citedreferenceKato T, Shinoda J, Nakayama N, et al. Metabolic assessment of gliomas using 11 C‐methionine, [ 18 F] fluorodeoxyglucose, and 11 C‐choline positron‐emission tomography. AJNR Am J Neuroradiol 2008; 29: 1176 ‐ 1182.en_US
dc.identifier.citedreferenceBishu S, Schmidt KC, Burlin T, et al. Regional rates of cerebral protein synthesis measured with L‐[1– 11 C]leucine and PET in conscious, young adult men: normal values, variability, and reproducibility. J Cereb Blood Flow Metab 2008; 28: 1502 ‐ 1513.en_US
dc.identifier.citedreferenceSundaram SK, Muzik O, Chugani DC, et al. Quantification of protein synthesis in the human brain using L‐[1– 11 C]‐leucine PET: incorporation of factors for large neutral amino acids in plasma and for amino acids recycled from tissue. J Nucl Med 2006; 47: 1787 ‐ 1795.en_US
dc.identifier.citedreferenceJuhász C, Batista CE, Chugani DC, et al. Evolution of cortical metabolic abnormalities and their clinical correlates in Sturge‐Weber syndrome. Eur J Paediatr Neurol 2007; 11: 277 ‐ 284.en_US
dc.identifier.citedreferenceLee JS, Asano E, Muzik O, et al. Sturge‐Weber syndrome: correlation between clinical course and FDG PET findings. Neurology 2001; 57: 189 ‐ 195.en_US
dc.identifier.citedreferenceMu F, Mangner T, Chugani H. Facile synthesis of L‐[1– 11 C]leucine as a PET radiotracer for the measurement of cerebral protein synthesis. J Labelled Compds Radiopharm 2005; 48: S189.en_US
dc.identifier.citedreferenceCizek J, Herholz K, Vollmar S, et al. Fast and robust registration of PET and MR images of human brain. Neuroimage 2004; 22: 434 ‐ 442.en_US
dc.identifier.citedreferencePatlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood‐to‐brain transfer constants from multiple‐time uptake data. J Cereb Blood Flow Metab 1983; 3: 1 ‐ 7.en_US
dc.identifier.citedreferenceHovda DA, Villablanca JR, Chugani HT, et al. Metabolic maturation of the brain: a study of local cerebral protein synthesis in the developing cat. Brain Res 2006; 1113: 54 ‐ 63.en_US
dc.identifier.citedreferenceBatista CE, Juhász C, Muzik O, et al. Imaging correlates of differential expression of indoleamine 2,3‐dioxygenase in human brain tumors. Mol Imaging Biol 2009; 11: 460 ‐ 466.en_US
dc.identifier.citedreferenceChugani HT, Mazziotta JC, Phelps ME. Sturge‐Weber syndrome: a study of cerebral glucose utilization with positron emission tomography. J Pediatr 1989; 114: 244 ‐ 253.en_US
dc.identifier.citedreferenceCunha e Sa M, Barroso CP, Caldas MC, et al. Innervation pattern of malformative cortical vessels in Sturge‐Weber disease: an histochemical, immunohistochemical, and ultrastructural study. Neurosurgery 1997; 41: 872 ‐ 876; discussion 876‐877.en_US
dc.identifier.citedreferenceIchinose T, Tsuyuguchi N, Morino M, et al. Discrepancy between [ 18 F]fluorodeoxyglucose and 11 C‐methionine positron emission tomography findings in Sturge‐Weber syndrome–case report. Neurol Med Chir (Tokyo) 2003; 43: 461 ‐ 464.en_US
dc.identifier.citedreferenceSinghal T, Narayanan TK, Jain V, et al. 11 C‐L‐methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 2008; 10: 1 ‐ 18.en_US
dc.identifier.citedreferenceDethy S, Manto M, Kentos A, et al. PET findings in a brain abscess associated with a silent atrial septal defect. Clin Neurol Neurosurg 1995; 97: 349 ‐ 353.en_US
dc.identifier.citedreferenceJuhász C, Chugani DC, Muzik O, et al. In vivo uptake and metabolism of α‐[ 11 C]methyl‐L‐tryptophan in human brain tumors. J Cereb Blood Flow Metab 2006; 26: 345 ‐ 357.en_US
dc.identifier.citedreferenceRoelcke U, Radu EW, von Ammon K, et al. Alteration of blood‐brain barrier in human brain tumors: comparison of [ 18 F]fluorodeoxyglucose, [ 11 C]methionine and rubidium‐82 using PET. J Neurol Sci 1995; 132: 20 ‐ 27.en_US
dc.identifier.citedreferenceSpaeth N, Wyss MT, Pahnke J, et al. Uptake of 18 F‐fluorocholine, 18 F‐fluoro‐ethyl‐L: ‐tyrosine and 18 F‐fluoro‐2‐deoxyglucose in F98 gliomas in the rat. Eur J Nucl Med Mol Imaging 2006; 33: 673 ‐ 682.en_US
dc.identifier.citedreferenceTorp SH, Alsaker M. Ki‐67 immunoreactivity, basic fibroblastic growth factor (bFGF) expression, and microvessel density as supplementary prognostic tools in low‐grade astrocytomas. An immunohistochemical study with special reference to the reliability of different Ki‐67 antibodies. Pathol Res Pract 2002; 198: 261 ‐ 265.en_US
dc.identifier.citedreferenceMaton B, Krsek P, Jayakar P, et al. Medically intractable epilepsy in Sturge‐Weber syndrome is associated with cortical malformation: implications for surgical therapy. Epilepsia 2010; 51: 257 ‐ 267.en_US
dc.identifier.citedreferenceSasaki M, Kuwabara Y, Yoshida T, et al. Carbon‐11‐methionine PET in focal cortical dysplasia: a comparison with fluorine‐18‐FDG PET and technetium‐99m‐ECD SPECT. J Nucl Med 1998; 39: 974 ‐ 977.en_US
dc.identifier.citedreferenceBentson JR, Wilson GH, Newton TH. Cerebral venous drainage pattern of the Sturge‐Weber syndrome. Radiology 1971; 101: 111 ‐ 118.en_US
dc.identifier.citedreferenceLin DD, Barker PB, Hatfield LA, et al. Dynamic MR perfusion and proton MR spectroscopic imaging in Sturge‐Weber syndrome: correlation with neurological symptoms. J Magn Reson Imaging 2006; 24: 274 ‐ 281.en_US
dc.identifier.citedreferenceRoach E, Bodensteiner J. Neurologic manifestations of Sturge‐Weber syndrome. In: Bodensteiner JB, Roach ES, eds. Sturge‐Weber Syndrome. Mt. Freedom, NJ: The Sturge‐Weber Foundation, 1999: 27 ‐ 38.en_US
dc.identifier.citedreferenceComi AM. Pathophysiology of Sturge‐Weber syndrome. J Child Neurol 2003; 18: 509 ‐ 516.en_US
dc.identifier.citedreferenceComati A, Beck H, Halliday W, et al. Upregulation of hypoxia‐inducible factor (HIF)‐1α and HIF‐2α in leptomeningeal vascular malformations of Sturge‐Weber syndrome. J Neuropathol Exp Neurol 2007; 66: 86 ‐ 97.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.