Show simple item record

Organic Dye Design Tools for Efficient Photocurrent Generation in Dye‐Sensitized Solar Cells: Exciton Binding Energy and Electron Acceptors

dc.contributor.authorKim, Bong‐gien_US
dc.contributor.authorZhen, Chang‐guaen_US
dc.contributor.authorJeong, Eun Jeongen_US
dc.contributor.authorKieffer, Johnen_US
dc.contributor.authorKim, Jinsangen_US
dc.date.accessioned2012-05-21T15:47:46Z
dc.date.available2013-06-11T19:15:50Zen_US
dc.date.issued2012-04-24en_US
dc.identifier.citationKim, Bong‐gi ; Zhen, Chang‐gua ; Jeong, Eun Jeong; Kieffer, John; Kim, Jinsang (2012). "Organic Dye Design Tools for Efficient Photocurrent Generation in Dyeâ Sensitized Solar Cells: Exciton Binding Energy and Electron Acceptors." Advanced Functional Materials 22(8): 1606-1612. <http://hdl.handle.net/2027.42/91137>en_US
dc.identifier.issn1616-301Xen_US
dc.identifier.issn1616-3028en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91137
dc.description.abstractThe relationship between the exciton binding energies of several pure organic dyes and their chemical structures is explored using density functional theory calculations in order to optimize the molecular design in terms of the light‐to‐electric energy‐conversion efficiency in dye‐sensitized solar cell devices. Comparing calculations with measurements reveals that the exciton binding energy and quantum yield are inversely correlated, implying that dyes with lower exciton binding energy produce electric current from the absorbed photons more efficiently. When a strong electron‐accepting moiety is inserted in the middle of the dye framework, the light‐to‐electric energy‐conversion behavior significantly deteriorates. As verified by electronic‐structure calculations, this is likely due to electron localization near the electron‐deficient group. The combined computational and experimental design approach provides insight into the functioning of organic photosensitizing dyes for solar‐cell applications. This is exemplified by the development of a novel, all‐organic dye (EB‐01) exhibiting a power conversion efficiency of over 9%. A combined computational and experimental design approach provides insight into the functioning of organic photosensitizer dyes for solar cell applications. Comparing calculations with measurements reveals that the exciton binding energy and quantum yield are inversely correlated. When a strong electron‐accepting moiety is inserted in the middle of the dye framework, the light‐to‐electric energy conversion behavior significantly deteriorates.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherStructure‐Property Relationshipsen_US
dc.subject.otherOrganic Electronicsen_US
dc.subject.otherSolar Cellsen_US
dc.titleOrganic Dye Design Tools for Efficient Photocurrent Generation in Dye‐Sensitized Solar Cells: Exciton Binding Energy and Electron Acceptorsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEngineering (General)en_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMacromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA.en_US
dc.contributor.affiliationumDepartment of Material Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumChemical Engineering, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Material Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumMacromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91137/1/adfm_201101961_sm_suppl.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91137/2/1606_ftp.pdf
dc.identifier.doi10.1002/adfm.201101961en_US
dc.identifier.sourceAdvanced Functional Materialsen_US
dc.identifier.citedreferenceS. Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M.‐H. Lee, W. Lee, J. Park, K. Kim, N.‐G. Park, C. Kim, Chem. Commun. 2007, 4887.en_US
dc.identifier.citedreferenceT. Horiuchi, H. Miura, K. Sumioka, S. Uchida, J. Am. Chem. Soc. 2004, 126, 12218.en_US
dc.identifier.citedreferenceS. Ito, S. M. Zakeeruddin, R. Humphry‐Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, M. Grätzel, Adv. Mater. 2006, 18, 1202.en_US
dc.identifier.citedreferenceH. Choi, C. Baik, S. O. Kang, J. Ko, M.‐S. Kang, M. K. Nazeeruddin, M. Grätzel, Angew. Chem. Int. Ed. 2008, 47, 327.en_US
dc.identifier.citedreferenceC.‐H. Chen, Y.‐C. Hsu, H.‐H. Chou, K. R. J. Thomas, J. T. Lin, C.‐P. Hsu, Chem. Eur. J. 2010, 16, 3184.en_US
dc.identifier.citedreferenceK. Hara, Z.‐S. Wang, Y. Cui, A. Furube, N. Koumura, Energy Environ. Sci. 2009, 2, 1109.en_US
dc.identifier.citedreferenceZ.‐S. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi, A. Mori, T. Kubo, A. Furube, K. Hara, Chem. Mater. 2008, 20, 3993.en_US
dc.identifier.citedreferenceO. Kohle, M. Grätzel, A. F. Meyer, T. B. Meyer, Adv. Mater. 1997, 9, 904.en_US
dc.identifier.citedreferenceD. Liu, R. W. Fessenden, G. L. Hug, P. V. Kamat, J. Phys. Chem. B 1997, 101, 2583.en_US
dc.identifier.citedreferenceK. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, J. Phys. Chem. B 2003, 107, 597.en_US
dc.identifier.citedreferenceM. Pastore, F. D. Angelis, ACS Nano 2010, 4, 556.en_US
dc.identifier.citedreferenceH. Chen, H. Huang, X. Huang, J. N. Clifford, A. Forneli, E. Palomares, X. Zheng, L. Zheng, X. Wang, P. Shen, B. Zhao, S. Tan, J. Phys. Chem. C 2010, 114, 3280.en_US
dc.identifier.citedreferenceM. Knupfer, Appl. Phys. A 2003, 77, 623.en_US
dc.identifier.citedreferenceG. Li, K.‐J. Jiang, Y.‐F. Li, S.‐L. Li, L.‐M. Yang, J. Phys. Chem. C 2008, 112, 11591.en_US
dc.identifier.citedreferenceS.‐L. Wang, T.‐I. Ho, J. Photochem. Photobiol. A 2000, 135, 119.en_US
dc.identifier.citedreferenceR. Jose, A. Kumar, V. Thavasi, K. Fujihara, S. Uchida, S. Ramakrishna, Appl. Phys. Lett. 2008, 93, 023125.en_US
dc.identifier.citedreferenceR. A. Marcus, N. Sutin, Biochim. Biophys. Acta 1985, 811, 265.en_US
dc.identifier.citedreferenceS. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Pechy, M. Grätzel, Chem. Commun. 2008, 5194.en_US
dc.identifier.citedreferenceG. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, P. Wang, Chem. Commun. 2009, 2198.en_US
dc.identifier.citedreferenceM. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman Jr., J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al‐Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.en_US
dc.identifier.citedreferenceJ. J. P. Stewart, J. Comput. Chem. 1989, 10, 209.en_US
dc.identifier.citedreferenceA. D. Becke, J. Chem. Phys. 1993, 98, 5648.en_US
dc.identifier.citedreferenceM. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654.en_US
dc.identifier.citedreferenceW. J. Hehre, R. Ditchfie, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.en_US
dc.identifier.citedreferenceB. A. Gregg, J. Phys. Chem. B 2003, 107, 4688.en_US
dc.identifier.citedreferenceG. D. Scholes, G. Rumbles, Nat. Mater. 2006, 5, 683.en_US
dc.identifier.citedreferenceC.‐G. Zhen, U. Becker, J. Kieffer, J. Phys. Chem. A 2009, 113, 9707.en_US
dc.identifier.citedreferenceM. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, T. Bessho, M. Grätzel, J. Am. Chem. Soc. 2005, 127, 16835.en_US
dc.identifier.citedreferenceB. O'Regan, M. Grätzel, Nature 1991, 353, 737.en_US
dc.identifier.citedreferenceF. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, J. Am. Chem. Soc. 2008. 130, 10720.en_US
dc.identifier.citedreferenceM. Grätzel, Prog. Photovoltaics 2006, 14, 429.en_US
dc.identifier.citedreferenceM. K. Nazeeruddin, Coord. Chem. Rev. 2004, 248, 1161.en_US
dc.identifier.citedreferenceN.‐G. Park, M. G. Kang, K. M. Kim, K. S. Ryu, S. H. Chang, D.‐K. Kim, J. Van de Lagemaat, K. D. Benkstein, A. J. Frank, Langmuir 2004, 20, 4246.en_US
dc.identifier.citedreferenceT. A. Heimer, E. J. Heilweil, C. A. Bignozzi, G. J. Meyer, J. Phys. Chem. A 2000, 104, 4256.en_US
dc.identifier.citedreferenceA. Hagfeldt, M. Grätzel, Acc. Chem. Res. 2000, 33, 269.en_US
dc.identifier.citedreferenceM. Ye, X. Xin, C. Lin, Z. Lin, Nano Lett. 2011, 11, 3214.en_US
dc.identifier.citedreferenceJ. Wang, Z. Lin, Chem. Mater. 2010, 22, 579.en_US
dc.identifier.citedreferenceH. Tian, X. Yang, R. Chen, R. Zhang, A. Hagfeldt, L. Sun, J. Phys. Chem. C 2008, 112, 11023.en_US
dc.identifier.citedreferenceM. Liang, W. Xu, F. Cai, P. Chen, B. Peng, J. Chen, Z. Li, J. Phys. Chem. C 2007, 111, 4465.en_US
dc.identifier.citedreferenceW. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, P. Wang, Chem. Mater. 2010, 22, 1915.en_US
dc.identifier.citedreferenceK. Hara, Z. S. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara, Y. Dan‐oh, C. Kasada, A. Shinpo, S. Suga, J. Phys. Chem. B 2005, 109, 15476.en_US
dc.identifier.citedreferenceZ.‐S. Wang, Y. Cui, K. Hara, Y. Dan‐oh, C. Kasada, A. Shinpo, Adv. Mater. 2007, 19, 1138.en_US
dc.identifier.citedreferenceK. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi, Y. Abe, H. Sugihara, H. Arakawa, Chem. Commun. 2000, 1173.en_US
dc.identifier.citedreferenceM. O. Lenz, J. Wachtveitl, J. Phys. Chem. C 2008, 112, 11973.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.