Show simple item record

Evidence of hypoxic foraging forays by yellow perch ( Perca flavescens ) and potential consequences for prey consumption

dc.contributor.authorRoberts, James J.en_US
dc.contributor.authorGrecay, Paul A.en_US
dc.contributor.authorLudsin, Stuart A.en_US
dc.contributor.authorPothoven, Steve A.en_US
dc.contributor.authorVanderploeg, Henry A.en_US
dc.contributor.authorHöök, Tomas O.en_US
dc.date.accessioned2012-05-21T15:48:00Z
dc.date.available2013-07-01T14:33:05Zen_US
dc.date.issued2012-05en_US
dc.identifier.citationRoberts, James J. ; Grecay, Paul A. ; Ludsin, Stuart A. ; Pothoven, Steve A. ; Vanderploeg, Henry A. ; Höök, Tomas O. (2012). "Evidence of hypoxic foraging forays by yellow perch ( Perca flavescens ) and potential consequences for prey consumption." Freshwater Biology 57(5). <http://hdl.handle.net/2027.42/91146>en_US
dc.identifier.issn0046-5070en_US
dc.identifier.issn1365-2427en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91146
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAnoxiaen_US
dc.subject.otherMovement Behaviouren_US
dc.subject.otherGreat Lakesen_US
dc.subject.otherEutrophicationen_US
dc.subject.otherBioenergeticsen_US
dc.titleEvidence of hypoxic foraging forays by yellow perch ( Perca flavescens ) and potential consequences for prey consumptionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and Environment‐Cooperative Institute for Limnology and Ecosystems Research, University of Michigan, Ann Arbor, MI, U.S.A.en_US
dc.contributor.affiliationotherDepartment of Forestry and Natural Resources, Purdue University, West Lafayette, IN, U.S.A.en_US
dc.contributor.affiliationotherGreat Lakes Environmental Research Laboratory‐National Oceanic and Atmospheric Administration: Lake Michigan Field Station, Muskegon, MI, U.S.A.en_US
dc.contributor.affiliationotherThe Ohio State University, Department of Evolution, Ecology, and Organismal Biology, Aquatic Ecology Laboratory, Columbus, OH, U.S.A.en_US
dc.contributor.affiliationotherGreat Lakes Environmental Research Laboratory‐National Oceanic and Atmospheric Administration, Ann Arbor, MI, U.S.A.en_US
dc.contributor.affiliationotherDepartment of Biological Sciences, Salisbury University, Salisbury, MD, U.S.A.en_US
dc.contributor.affiliationotherDepartment of Fish Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, U.S.A.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91146/1/FWB_2753_sm_fS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91146/2/j.1365-2427.2012.02753.x.pdf
dc.identifier.doi10.1111/j.1365-2427.2012.02753.xen_US
dc.identifier.sourceFreshwater Biologyen_US
dc.identifier.citedreferenceRucinski D.K., Beletsky D., Depinto J.V., Schwab D.J. & Scavia D. ( 2010 ) A simple 1‐dimensional, climate based dissolved oxygen model for the central basin of Lake Erie. Journal of Great Lakes Research, 36, 465 – 476.en_US
dc.identifier.citedreferencePihl L. ( 1994 ) Changes in the diet of demersal fish due to eutrophication‐induced hypoxia in the Kattegat, Sweden. Canadian Journal of Fisheries and Aquatic Sciences, 51, 321 – 336.en_US
dc.identifier.citedreferencePollock M.S., Clarke L.M.J. & Dube M.G. ( 2007 ) The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environmental Reviews, 15, 1 – 14.en_US
dc.identifier.citedreferencePothoven S.A., Vanderploeg H.A., Ludsin S.A., Höök T.O. & Brandt S.B. ( 2009 ) Feeding ecology of emerald shiners and rainbow smelt in central Lake Erie. Journal of Great Lakes Research, 35, 190 – 198.en_US
dc.identifier.citedreferencePrince E.D. & Goodyear C.P. ( 2006 ) Hypoxia‐based habitat compression of tropical pelagic fishes. Fisheries Oceanography, 15, 451 – 464.en_US
dc.identifier.citedreferenceRahel F.J. & Nutzman J.W. ( 1994 ) Foraging in a lethal environment: fish predation in hypoxic water of a stratified lake. Ecology, 75, 1246 – 1253.en_US
dc.identifier.citedreferenceRoberts J.J., Höök T.O., Ludsin S.A., Pothoven S.A., Vanderploeg H.A. & Brandt S.B. ( 2009 ) Effects of hypolimnetic hypoxia on foraging and distributions of Lake Erie yellow perch. Journal of Experimental Marine Biology and Ecology, 381, S132 – S142.en_US
dc.identifier.citedreferenceRoberts J.J., Brandt S.B., Fanslow D., Ludsin S.A., Pothoven S.A., Scavia D. et al. ( 2011 ) Effects of hypoxia on consumption, growth, and RNA:DNA ratios of young yellow perch. Transactions of the American Fisheries Society, 140, 1574 – 1586.en_US
dc.identifier.citedreferenceRose K.A. ( 2000 ) Why are quantitative relationships between environmental quality and fish populations so elusive? Ecological Applications, 10, 367 – 385.en_US
dc.identifier.citedreferenceRose K.A., Adamack A.T., Murphy C.A., Sable S.E., Kolesar S.E., Craig J.K. et al. ( 2009 ) Does hypoxia have population‐level effects on coastal fish? Musing from the virtual world. Journal of Experimental Marine Biology and Ecology, 381, S188 – S203.en_US
dc.identifier.citedreferenceRosen R. ( 1981 ) Length‐dry weight relationships of some freshwater zooplankton. Journal of Freshwater Ecology, 1, 225 – 229.en_US
dc.identifier.citedreferenceRudstam L.G., Parker S.L., Einhouse D.W., Witzel L.D., Warner D.M., Stritzel J.L. et al. ( 2003 ) Application of in situ target‐strength estimations in lakes: example from rainbow‐smelt surveys in Lake Erie and Champlain. ICES Journal of Marine Science, 60, 500 – 507.en_US
dc.identifier.citedreferenceRudstam L.G., Parker‐Stetter S.L., Sullivan P.J. & Warner D.M. ( 2009 ) Towards a standard operating procedure for fishery acoustic surveys in the Laurentian Great Lakes, North America. ICES Journal of Marine Science, 66, 1 – 7.en_US
dc.identifier.citedreferenceRyan P.A., Knight R., Macgregor R., Towns G., Hoopes R. & Culligan W. ( 2003 ) Fish‐community goals and objectives for Lake Erie. Great Lakes Fishery Commission Special Publication 03–02, 56.en_US
dc.identifier.citedreferenceSawada K., Furusawa M. & Williamson N.J. ( 1993 ) Conditions for the precise measurement of fish target strength in situ. Journal of the Marine Acoustical Society of Japan, 20, 73 – 79.en_US
dc.identifier.citedreferenceSchaefer K.M., Fuller D.W. & Block B.A. ( 2007 ) Movements, behaviour, and habitat utilization of yellowfin tuna ( Thunnus albacares ) in the northeastern Pacific Ocean, ascertained through archival tag data. Marine Biology, 152, 503 – 525.en_US
dc.identifier.citedreferenceSchaeffer J.S., Haas R.C., Diana J.S. & Breck J.E. ( 1999 ) Field test of two energetic models for yellow perch. Transactions of the American Fisheries Society, 128, 414 – 435.en_US
dc.identifier.citedreferenceStanley D.R. & Wilson C.A. ( 2004 ) Effect of hypoxia on the distribution of fishes associated with a petroleum platform off coastal Louisiana. North American Journal of Fisheries Management, 24, 662 – 671.en_US
dc.identifier.citedreferenceStierhoff K.L., Targett T.E. & Grecay P.A. ( 2003 ) Hypoxia tolerance of the mummichog: the role of access to the water surface. Journal of Fish Biology, 63, 580 – 592.en_US
dc.identifier.citedreferenceStierhoff K.L., Targett T.E. & Miller K. ( 2006 ) Ecophysiological responses of juvenile summer and winter flounder to hypoxia: experimental and modelling analyses of effects on estuarine nursery quality. Marine Ecology Progress Series, 325, 255 – 266.en_US
dc.identifier.citedreferenceStierhoff K.L., Targett T.E. & Power J.H. ( 2009 ) Hypoxia‐induced growth limitation of juvenile fishes in an estuarine nursery: assessment of small‐scale temporal dynamics using RNA:DNA. Canadian Journal of Fisheries and Aquatic Sciences, 66, 1033 – 1047.en_US
dc.identifier.citedreferenceStrand E., Jorgensen C. & Huse G. ( 2005 ) Modelling buoyancy regulation in fishes with swimbladders: bioenergetics and behaviour. Ecological Modelling, 185, 309 – 327.en_US
dc.identifier.citedreferenceSuthers I.M. & Gee J.H. ( 1986 ) Role of hypoxia in limiting diel spring and summer distribution of juvenile yellow perch ( Perca flavescens ) in a prairie marsh. Canadian Journal of Fisheries and Aquatic Sciences, 43, 1562 – 1570.en_US
dc.identifier.citedreferenceTaylor J.C. & Rand P.S. ( 2003 ) Spatial overlap and distribution of anchovies ( Anchoa spp.) and copepods is a shallow stratified estuary. Aquatic Living Resources, 16, 191 – 196.en_US
dc.identifier.citedreferenceTaylor J.C., Rand P.S. & Jenkins J. ( 2007 ) Swimming behaviour of juvenile anchovies ( Anchoa spp.) in an episodically hypoxic estuary: implications for individual energetics and trophic dynamics. Marine Biology, 152, 939 – 957.en_US
dc.identifier.citedreferenceTurner R.E. ( 2001 ) Some effects of eutrophication on pelagic and demersal marine food webs. In: Coastal Hypoxia: Consequences for Living Resources and Ecosystems. (Eds N.N. Rabalais & R.E. Turner ), pp. 371 – 398. American Geophysical Union, Washington DC.en_US
dc.identifier.citedreferenceTyson J.T., Johnson T.B., Knight C.T. & Bur M.T. ( 2006 ) Intercalibration of research survey vessels on Lake Erie. North American Journal of Fisheries Management, 26, 559 – 570.en_US
dc.identifier.citedreferenceVanderploeg H.A., Ludsin S.A., Cavaletto J.F., Höök T.O., Pothoven S.A., Brandt S.B. et al. ( 2009a ) Hypoxic zones as habitat for zooplankton in Lake Erie: refuges from predation or exclusions zones? Journal of Experimental Marine Biology and Ecology, 381, S108 – S120.en_US
dc.identifier.citedreferenceVanderploeg H.A., Ludsin S.A., Ruberg S.A., Höök T.O., Pothoven S.A., Brandt S.B. et al. ( 2009b ) Hypoxia affects spatial distributions and overlap of pelagic fish, zooplankton, and phytoplankton in Lake Erie. Journal of Experimental Marine Biology and Ecology, 381, S92 – S107.en_US
dc.identifier.citedreferenceWannamaker C.M. & Rice J.A. ( 2000 ) Effects of hypoxia on movements and behaviour of selected estuarine organisms from the southeastern United States. Journal of Experimental Marine Biology and Ecology, 249, 145 – 163.en_US
dc.identifier.citedreferenceZhang H., Ludsin S.A., Mason D.M., Adamack A.T., Brandt S.B., Zhang X. et al. ( 2009 ) Hypoxia‐driven changes in the behavior and spatial distribution of pelagic fish and mesozooplankton in the northern Gulf of Mexico. Journal of Experimental Marine Biology and Ecology, 381, s80 – s91.en_US
dc.identifier.citedreferenceAku P.M.K. & Tonn W.M. ( 1997 ) Changes in population structure, growth, and biomass of cisco ( Coregonus artedi ) during hypolimnetic oxygenation of a deep, eutrophic lake, Amisk Lake, Alberta. Canadian Journal of Fisheries and Aquatic Sciences, 54, 2196 – 2206.en_US
dc.identifier.citedreferenceAku P.M.K. & Tonn W.M. ( 1999 ) Effects of hypolimnetic oxygenation on the food resources and feeding ecology of cisco in Amisk Lake, Alberta. Transactions of the American Fisheries Society, 128, 17 – 30.en_US
dc.identifier.citedreferenceAku P.M.K., Rudstam L.G. & Tonn W.M. ( 1997 ) Impact of hypolimnetic oxygenation on the vertical distribution of cisco ( Coregonus artedi ) in Amisk Lake, Alberta. Canadian Journal of Fisheries and Aquatic Sciences, 54, 2182 – 2195.en_US
dc.identifier.citedreferenceArend K.K., Beletsky D., Depinto J.V., Ludsin S.A., Roberts J.J., Rucinski D.K. et al. ( 2011 ) Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie. Freshwater Biology, 56, 366 – 383.en_US
dc.identifier.citedreferenceBaldwin C.M., Beauchamp D.A. & Gubala C.P. ( 2002 ) Seasonal and diel distribution and movement of cutthroat trout from ultrasonic telemetry. Transactions of the American Fisheries Society, 131, 143 – 158.en_US
dc.identifier.citedreferenceBelore M., Cook A., Einhouse D., Hartman T., Kayle K., Kenyon R. et al. ( 2007 ) Report of the Lake Erie yellow perch task group. p. 51. Great Lakes Fishery Commission.en_US
dc.identifier.citedreferenceBenke A.C., Huryn A.D., Smock L.A. & Wallace J.B. ( 1999 ) Length‐mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society, 18, 308 – 343.en_US
dc.identifier.citedreferenceBevelhimer M.S. & Adams S.M. ( 1993 ) A bioenergetics analysis of diel vertical migration by kokanee salmon, Oncorhynchus‐nerka. Canadian Journal of Fisheries and Aquatic Sciences, 50, 2236 – 2349.en_US
dc.identifier.citedreferenceBrady D.C., Targett T.E. & Tuzzolino D.M. ( 2009 ) Behavioural responses of juvenile weakfish ( Cynoscion regalis ) to diel‐cycling hypoxia: swimming speed, angular correlation, expected displacement, and effects of hypoxia acclimation. Canadian Journal of Fisheries and Aquatic Sciences, 66, 415 – 424.en_US
dc.identifier.citedreferenceBreitburg D. ( 2002 ) Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries, 25, 767 – 781.en_US
dc.identifier.citedreferenceBur M.T. & Klarer D.M. ( 1991 ) Prey selection for the exotic cladoceran Bythotrephes cederstroemi by selected Lake Erie fishes. Journal of Great Lakes Research, 17, 85 – 93.en_US
dc.identifier.citedreferenceBurns N.M., Rockwell D.C., Bertram P.E., Dolan D.M. & Ciborowski J.J.H. ( 2005 ) Trends in temperature, secchi depth, and dissolved oxygen depletion rates in the central basin of Lake Erie, 1983‐2002. Journal of Great Lakes Research, 31, 35 – 49.en_US
dc.identifier.citedreferenceCarlson A.R., Blocher J. & Herman L.J. ( 1980 ) Growth and survival of channel catfish and yellow perch exposed to lowered constant and diurnally fluctuating dissolved oxygen concentrations. The Progressive Fish-Culturist, 42, 73 – 78.en_US
dc.identifier.citedreferenceCraig J.K. & Crowder L.B. ( 2005 ) Hypoxia‐induced habitat shifts and energetic consequences in Atlantic croaker and brown shrimp on the Gulf of Mexico shelf. Marine Ecology Progress Series, 294, 79 – 94.en_US
dc.identifier.citedreferenceCulver D.A., Boucherle M.M., Bean D.J. & Fletcher J.W. ( 1985 ) Biomass of freshwater crustacean zooplankton from length‐weight regressions. Canadian Journal of Fisheries and Aquatic Sciences, 42, 1380 – 1390.en_US
dc.identifier.citedreferenceDiaz R.J. ( 2001 ) Overview of hypoxia around the world. Journal of Environmental Quality, 30, 275 – 281.en_US
dc.identifier.citedreferenceDiaz R.J. & Rosenberg R. ( 2008 ) Spreading dead zones and consequences for marine ecosystems. Science, 321, 926 – 929.en_US
dc.identifier.citedreferenceDonaldson M.R., Cooke S.J., Patterson D.A. & Macdonald J.S. ( 2008 ) Cold shock and fish. Journal of Fish Biology, 73, 1491 – 1530.en_US
dc.identifier.citedreferenceEby L.A. & Crowder L.B. ( 2002 ) Hypoxia‐based habitat compression in the Neuse River estuary: context‐dependent shifts in behavioral avoidance thresholds. Canadian Journal of Fisheries and Aquatic Sciences, 59, 952 – 965.en_US
dc.identifier.citedreferenceEby L.A., Crowder L.B., Mcclellan C.M., Peterson C.H. & Powers M.J. ( 2005 ) Habitat degradation from intermittent hypoxia: impacts on demersal fishes. Marine Ecology-Progress Series, 291, 249 – 261.en_US
dc.identifier.citedreferenceFlecker A.S., Mcintyre P.B., Moore J.W., Anderson J.T., Taylor B.W. & Hall R.O. ( 2010 ) Migratory fishes as material and process subsidies in riverine ecosystems. American Fisheries Society Symposium, 73, 550 – 592.en_US
dc.identifier.citedreferenceFoote K.G. ( 1987 ) Fish target strengths for use in echo integrator surveys. Journal of the Acoustical Society of America, 82, 981 – 987.en_US
dc.identifier.citedreferenceFrid A., Burns J., Baker G.G. & Thorne R.E. ( 2009 ) Predicting synergistic effects of resources and predators on foraging decisions by juvenile Stellar sea lions. Oecologia, 158, 775 – 786.en_US
dc.identifier.citedreferenceFrouzova J., Kubecka J., Balk H. & Frouz J. ( 2005 ) Target strength of some european fish species and its dependence on fish body parameters. Fisheries Research, 75, 86 – 96.en_US
dc.identifier.citedreferenceGrecay P.A. & Stierhoff K.L. ( 2002 ) A device for simultaneously controlling multiple treatment levels of dissolved oxygen in laboratory experiments. Journal of Experimental Marine Biology and Ecology, 280, 53 – 62.en_US
dc.identifier.citedreferenceHartman K.J. & Nagy B.W. ( 2005 ) A target strength and length relationship for striped bass and white perch. Transactions of the American Fisheries Society, 134, 375 – 380.en_US
dc.identifier.citedreferenceHawley N., Johengen T.H., Rao Y.R., Ruberg S.A., Beletsky D., Ludsin S.A. et al. ( 2006 ) Lake Erie hypoxia prompts Canada‐U.S. study. EOS, Transactions, American Geophysical Union, 87, 313 – 315.en_US
dc.identifier.citedreferenceHays G.C., Farquhar M.R., Luschi P., Teo S.L.H. & Thys T.M. ( 2009 ) Vertical niche overlap by two ocean giants with similar diets; Ocean sunfish and leatherback turtles. Journal of Experimental Marine Biology and Ecology, 370, 134 – 143.en_US
dc.identifier.citedreferenceHayward R.S., Margraf F.J., Parrish D.L. & Vondracek B. ( 1991 ) Low‐cost field estimation of yellow perch daily ration. Transactions of the American Fisheries Society, 120, 589 – 604.en_US
dc.identifier.citedreferenceHazen E.L., Craig J.K., Good C.P. & Crowder L.B. ( 2009 ) Vertical distribution of fish biomass in hypoxic waters on the Gulf of Mexico shelf. Marine Ecology-Progress Series, 375, 195 – 207.en_US
dc.identifier.citedreferenceHergenrader G.L. & Hasler A.D. ( 1966 ) Diel activity and vertical distribution of yellow perch ( Perca flavescens ) under the ice. Journal of the Fisheries Research Board of Canada, 23, 499 – 509.en_US
dc.identifier.citedreferenceJohnson B.L., Keevin T.M., Laux E.A., Miller T.B., Degan D.J. & Schaeffer D.J. ( 2005 ) Seasonal fish densities in the lock chamber at lock and dam 25, upper Mississippi River. In: Upper Mississippi River‐Illinois Waterway System Navigation Study. (Ed. U.S.A.C.O. Engineers ), pp. 20. U.S. Army Corps of Engineers, St. Louis, MO.en_US
dc.identifier.citedreferenceKramer D.L. ( 1987 ) Dissolved oxygen and fish behavior. Environmental Biology of Fishes, 18, 81 – 92.en_US
dc.identifier.citedreferenceKraus R.T. & Rooker J.R. ( 2007 ) Patterns of vertical habitat use by Atlantic blue marlin ( Makaira nigricans ) in the Gulf of Mexico. Gulf and Caribbean Research, 19, 89 – 97.en_US
dc.identifier.citedreferenceLandsman S.J., Nguyen V.M., Gutowsky L.F.G., Gobin J., Cook K.V., Binder T.R. et al. ( 2011 ) Fish movement and migration studies in the Laurentian Great Lakes: research trends and knowledge gaps. Journal of Great Lakes Research, 37, 365 – 379.en_US
dc.identifier.citedreferenceLudsin S.A., Mason D.M., Zhang X., Brandt S.B., Roman M.R., Boicourt W. et al. ( 2009 ) Hypoxia‐avoidance by planktivorous fish in Chesapeake Bay: implications for food web interactions and fish recruitment. Journal of Experimental Marine Biology and Ecology, 381, S121 – S131.en_US
dc.identifier.citedreferenceNathan R. ( 2008 ) An emerging movement ecology paradigm. Proceedings of the National Academy of Sciences of the United States of America, 105, 19050 – 19051.en_US
dc.identifier.citedreferenceParker‐Stetter S.L., Rudstam L.G., Sullivan P.J. & Warner D.M. ( 2009 ) Standard operating procedures for fisheries acoustic surveys in the Great Lakes. Great Lakes Fishery Commission Special Publication, 01.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.