Show simple item record

CD24 on thymic APCs regulates negative selection of myelin antigen‐specific T lymphocytes

dc.contributor.authorZhang, Xuejunen_US
dc.contributor.authorLiu, Jin‐qingen_US
dc.contributor.authorShi, Yunen_US
dc.contributor.authorReid, Hugh H.en_US
dc.contributor.authorBoyd, Richard L.en_US
dc.contributor.authorKhattabi, Mazinen_US
dc.contributor.authorEl‐omrani, Hani Y.en_US
dc.contributor.authorZheng, Panen_US
dc.contributor.authorLiu, Yangen_US
dc.contributor.authorBai, Xue‐fengen_US
dc.date.accessioned2012-05-21T15:48:09Z
dc.date.available2013-06-11T19:15:51Zen_US
dc.date.issued2012-04en_US
dc.identifier.citationZhang, Xuejun; Liu, Jin‐qing ; Shi, Yun; Reid, Hugh H.; Boyd, Richard L.; Khattabi, Mazin; El‐omrani, Hani Y. ; Zheng, Pan; Liu, Yang; Bai, Xue‐feng (2012). "CD24 on thymic APCs regulates negative selection of myelin antigenâ specific T lymphocytes." European Journal of Immunology 42(4): 924-935. <http://hdl.handle.net/2027.42/91152>en_US
dc.identifier.issn0014-2980en_US
dc.identifier.issn1521-4141en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91152
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAutoimmunityen_US
dc.subject.otherTCRen_US
dc.subject.otherCD4 + T Cellen_US
dc.subject.otherThymic Selectionen_US
dc.titleCD24 on thymic APCs regulates negative selection of myelin antigen‐specific T lymphocytesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid22213356en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91152/1/eji1398.pdf
dc.identifier.doi10.1002/eji.201142024en_US
dc.identifier.sourceEuropean Journal of Immunologyen_US
dc.identifier.citedreferenceChen, G. Y., Tang, J., Zheng, P. and Liu, Y., CD24 and Siglec‐10 selectively repress tissue damage‐induced immune responses. Science 2009. 323: 1722 – 1725.en_US
dc.identifier.citedreferenceWilliams, L. A., McLellan, A. D., Summers, K. L., Sorg, R. V., Fearnley, D. B. and Hart, D. N., Identification of a novel dendritic cell surface antigen defined by carbohydrate specific CD24 antibody cross‐reactivity. Immunology 1996. 89: 120 – 125.en_US
dc.identifier.citedreferenceKay, R., Rosten, P. M. and Humphries, R. K., CD24, a signal transducer modulating B cell activation responses, is a very short peptide with a glycosyl phosphatidylinositol membrane anchor. J. Immunol. 1991. 147: 1412 – 1416.en_US
dc.identifier.citedreferenceJung, K. C., Park, W. S., Kim, H. J., Choi, E. Y., Kook, M. C., Lee, H. W. and Bae, Y., TCR‐independent and caspase‐independent apoptosis of murine thymocytes by CD24 cross‐linking. J. Immunol. 2004. 172: 795 – 802.en_US
dc.identifier.citedreferenceHough, M. R., Takei, F., Humphries, R. K. and Kay, R., Defective development of thymocytes overexpressing the costimulatory molecule, heat‐stable antigen. J. Exp. Med. 1994. 179: 177 – 184.en_US
dc.identifier.citedreferenceZhou, Q., Wu, Y., Nielsen, P. J. and Liu, Y., Homotypic interaction of the heat‐stable antigen is not responsible for its co‐stimulatory activity for T‐cell clonal expansion. Eur. J. Immunol. 1997. 27: 2524 – 2528.en_US
dc.identifier.citedreferenceCarl, J. W., Jr., Liu, J. Q., Joshi, P. S., El‐Omrani, H. Y., Yin, L., Zheng, X., Whitacre, C. C. et al., Autoreactive T cells escape clonal deletion in the thymus by a CD24‐dependent pathway. J. Immunol. 2008. 181: 320 – 328.en_US
dc.identifier.citedreferenceLinares, D., Mana, P., Goodyear, M., Chow, A. M., Clavarino, C., Huntington, N. D., Barnett, L. et al., The magnitude and encephalogenic potential of autoimmune response to MOG is enhanced in MOG deficient mice. J. Autoimmun. 2003. 21: 339 – 351.en_US
dc.identifier.citedreferenceTarakhovsky, A., Kanner, S. B., Hombach, J., Ledbetter, J. A., Muller, W., Killeen, N. and Rajewsky, K., A role for CD5 in TCR‐mediated signal transduction and thymocyte selection. Science 1995. 269: 535 – 537.en_US
dc.identifier.citedreferenceAzzam, H. S., Grinberg, A., Lui, K., Shen, H., Shores, E. W. and Love, P. E., CD5 expression is developmentally regulated by T‐cell receptor (TCR) signals and TCR avidity. J. Exp. Med. 1998. 188: 2301 – 2311.en_US
dc.identifier.citedreferenceDelarasse, C., Daubas, P., Mars, L. T., Vizler, C., Litzenburger, T., Iglesias, A., Bauer, J. et al., Myelin/oligodendrocyte glycoprotein‐deficient (MOG‐deficient) mice reveal lack of immune tolerance to MOG in wild‐type mice. J. Clin. Invest. 2003. 112: 544 – 553.en_US
dc.identifier.citedreferenceFazilleau, N., Delarasse, C., Sweenie, C. H., Anderton, S. M., Fillatreau, S., Lemonnier, F. A., Pham‐Dinh, D. et al., Persistence ofautoreactive myelin oligodendrocyte glycoprotein (MOG)‐specific T‐cell repertoires in MOG‐expressing mice. Eur. J. Immunol. 2006. 36: 533 – 543.en_US
dc.identifier.citedreferenceFazilleau, N., Delarasse, C., Motta, I., Fillatreau, S., Gougeon, M. L., Kourilsky, P., Pham‐Dinh, D. et al., T‐cell repertoire diversity is required for relapses in myelin oligodendrocyte glycoprotein‐induced experimental autoimmune encephalomyelitis. J. Immunol. 2007. 178: 4865 – 4875.en_US
dc.identifier.citedreferenceKrishnamoorthy, G., Saxena, A., Mars, L. T., Domingues, H. S., Mentele, R., Ben‐Nun, A., Lassmann, H. et al., Myelin‐specific T cells also recognize neuronal autoantigen in a transgenic mouse model of multiple sclerosis. Nat. Med. 2009. 15: 626 – 632.en_US
dc.identifier.citedreferenceMarx, A., Wilisch, A., Schultz, A., Greiner, A., Magi, B., Pallini, V., Schalke, B. et al., Expression of neurofilaments and of a titin epitope in thymic epithelial tumors. Implications for the pathogenesis of myasthenia gravis. Am. J. Pathol. 1996. 148: 1839 – 1850.en_US
dc.identifier.citedreferenceGallegos, A. M. and Bevan, M. J., Central tolerance to tissue‐specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med. 2004. 200: 1039 – 1049.en_US
dc.identifier.citedreferenceLiu, Y., Chen, G. Y. and Zheng, P., CD24‐Siglec G/10 discriminates danger‐ from pathogen‐associated molecular patterns. Trends Immunol. 2009. 30: 557 – 561.en_US
dc.identifier.citedreferenceBoon, T., Cerottini, J. C., Van den Eynde, B., van der Bruggen, P. and Van Pel, A., Tumor antigens recognized by T lymphocytes. Annu. Rev. Immunol. 1994. 12: 337 – 365.en_US
dc.identifier.citedreferenceBai, X. F., Li, O., Zhou, Q., Zhang, H., Joshi, P. S., Zheng, X., Liu, Y. et al., CD24 controls expansion and persistence of autoreactive T cells in the central nervous system during experimental autoimmune encephalo‐myelitis. J. Exp. Med. 2004. 200: 447 – 458.en_US
dc.identifier.citedreferenceZhou, Q., Rammohan, K., Lin, S., Robinson, N., Li, O., Liu, X., Bai, X. F. et al., CD24 is a genetic modifier for risk and progression of multiple sclerosis. Proc. Natl. Acad. Sci. USA 2003. 100: 15041 – 15046.en_US
dc.identifier.citedreferenceWang, L., Lin, S., Rammohan, K. W., Liu, Z., Liu, J. Q., Liu, R. H., Guinther, N. et al., A dinucleotide deletion in CD24 confers protection against autoimmune diseases. PLoS Genet. 2007. 3: e49.en_US
dc.identifier.citedreferenceLiu, Y. and Zheng, P., CD24: a genetic checkpoint in T‐cell homeostasis and autoimmune diseases. Trends Immunol. 2007. 28: 315 – 320.en_US
dc.identifier.citedreferenceSanchez, E., Fernandez‐Gutierrez, B., Gonzalez‐Gay, M. A., Balsa, A., Garcia, A., Rodriguez, L., Pascual‐Salcedo, D. et al., Investigating the role of CD24 gene polymorphisms in rheumatoid arthritis. Ann. Rheum. Dis. 2008. 67: 1197 – 1198.en_US
dc.identifier.citedreferenceBettelli, E., Pagany, M., Weiner, H. L., Linington, C., Sobel, R. A. and Kuchroo, V. K., Myelin oligodendrocyte glycoprotein‐specific T‐cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med. 2003. 197: 1073 – 1081.en_US
dc.identifier.citedreferenceBai, X. F., Liu, J. Q., Liu, X., Guo, Y., Cox, K., Wen, J., Zheng, P. et al., The heat‐stable antigen determines pathogenicity of self‐reactive T cells in experimental autoimmune encephalomyelitis. J. Gin. Invest. 2000. 105: 1227 – 1232.en_US
dc.identifier.citedreferenceZhou, Q., Guo, Y. and Liu, Y., Regulation of the stability of heat‐stable antigen mRNA by interplay between two novel cis elements in the 3’ untranslated region. Mol. Cell. Biol. 1998. 18: 815 – 826.en_US
dc.identifier.citedreferenceBrocker, T., Riedinger, M. and Karjalainen, K., Driving gene expression specifically in dendritic cells. Adv. Exp. Med. Biol. 1997. 417: 55 – 57.en_US
dc.identifier.citedreferenceChen, M., Wang, Y. H., Wang, Y., Huang, L., Sandoval, H., Liu, Y. J. and Wang, J., Dendritic cell apoptosis in the maintenance of immune tolerance. Science 2006. 311: 1160 – 1164.en_US
dc.identifier.citedreferenceSprent, J. and Kishimoto, H., The thymus and negative selection. Immunol. Rev. 2002. 185: 126 – 135.en_US
dc.identifier.citedreferencevon Boehmer, H. and Kisielow, P., Negative selection of the T‐cell repertoire: where and when does it occur? Immunol. Rev. 2006. 209: 284 – 289.en_US
dc.identifier.citedreferenceHanahan, D., Peripheral‐antigen‐expressing cells in thymic medulla: Factors in self‐tolerance and autoimmunity. Curr. Opin. Immunol. 1998. 10: 656 – 662.en_US
dc.identifier.citedreferenceDerbinski, J., Schulte, A., Kyewski, B., and Klein, L., Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2001. 2: 1032 – 1039.en_US
dc.identifier.citedreferenceListon, A., Lesage, S., Wilson, J., Peltonen, L. and Goodnow, C. C., Aire regulates negative selection of organ‐specific T cells. Nat. Immunol. 2003. 4: 350 – 354.en_US
dc.identifier.citedreferenceAnderson, M. S., Venanzi, E. S., Klein, L., Chen, Z., Berzins, S. P., Turley, S. J., von Boehmer, H. et al., Projection of an immunological self shadow within the thymus by the aire protein. Science 2002. 298: 1395 – 1401.en_US
dc.identifier.citedreferenceAnderson, M. S., Venanzi, E. S., Chen, Z., Berzins, S. P., Benoist, C. and Mathis, D., The cellular mechanism of Aire control of T‐cell tolerance. Immunity 2005. 23: 227 – 239.en_US
dc.identifier.citedreferenceThrosby, M., Homo‐Delarche, F., Chevenne, D., Goya, R., Dardenne, M. and Pleau, J. M., Pancreatic hormone expression in the murine thymus: Localization in dendritic cells and macrophages. Endocrinology 1998. 139: 2399 – 2406.en_US
dc.identifier.citedreferencePugliese, A., Brown, D., Garza, D., Murchison, D., Zeller, M., Redondo, M. J., Diez, J. et al., Self‐antigen‐presenting cells expressing diabetes‐associated autoantigens exist in both thymus and peripheral lymphoid organs. J. Clin. Invest. 2001. 107: 555 – 564.en_US
dc.identifier.citedreferenceRincon, M., Whitmarsh, A., Yang, D. D., Weiss, L., Derijard, B., Jayaraj, P., Davis, R. J. et al., The JNK pathway regulates the In vivo deletion of immature CD4(+)CD8(+) thymocytes. J. Exp. Med. 1998. 188: 1817 – 1830.en_US
dc.identifier.citedreferenceSabapathy, K., Kallunki, T., David, J. P., Graef, I., Karin, M. and Wagner, E. F., c‐Jun NH2‐terminal kinase (JNK)1 and JNK2 have similar and stage‐dependent roles in regulating T‐cell apoptosis and proliferation. J. Exp. Med. 2001. 193: 317 – 328.en_US
dc.identifier.citedreferenceBehrens, A., Sabapathy, K., Graef, I., Cleary, M., Crabtree, G. R. and Wagner, E. F., Jun N‐terminal kinase 2 modulates thymocyte apoptosis and T‐cell activation through c‐Jun and nuclear factor of activated T‐cell (NF‐AT). Proc. Natl. Acad. Sci. USA 2001. 98: 1769 – 1774.en_US
dc.identifier.citedreferenceFinnish‐German APECED Consortium, An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD‐type zinc‐finger domains. Nat. Genet. 1997. 17: 399 – 403.en_US
dc.identifier.citedreferenceNagamine, K., Peterson, P., Scott, H. S., Kudoh, J., Minoshima, S., Heino, M., Krohn, K. J. et al., Positional cloning of the APECED gene. Nat. Genet. 1997. 17: 393 – 398.en_US
dc.identifier.citedreferenceSun, J. B., Olsson, T., Wang, W. Z., Xiao, B. G., Kostulas, V., Fredrikson, S., Ekre, H. P. et al., Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls. Eur. J. Immunol. 1991. 21: 1461 – 1468.en_US
dc.identifier.citedreferenceLiblau, R., Tournier‐Lasserve, E., Maciazek, J., Dumas, G., Siffert, O., Hashim, G. and Bach, M. A., T‐cell response to myelin basic protein epitopes in multiple sclerosis patients and healthy subjects. Eur. J. Immunol. 1991. 21: 1391 – 1395.en_US
dc.identifier.citedreferenceOta, K., Matsui, M., Milford, E. L., Mackin, G. A., Weiner, H. L. and Hafler, D. A., T‐cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 1990. 346: 183 – 187.en_US
dc.identifier.citedreferenceKuchroo, V. K., Anderson, A. C., Waldner, H., Munder, M., Bettelli, E. and Nicholson, L. B., T‐cell response in experimental autoimmune encepha‐lomyelitis (EAE): role of self and cross‐reactive antigens in shaping, tuning, and regulating the autopathogenic T‐cell repertoire. Annu. Rev. Immunol. 2002. 20: 101 – 123.en_US
dc.identifier.citedreferenceKlein, L., Klugmann, M., Nave, K. A., Tuohy, V. K. and Kyewski, B., Shaping of the autoreactive T‐cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nat. Med. 2000. 6: 56 – 61.en_US
dc.identifier.citedreferenceAnderson, A. C., Nicholson, L. B., Legge, K. L., Turchin, V., Zaghouani, H. and Kuchroo, V. K., High frequency of autoreactive myelin proteolipid protein‐specific T cells in the periphery of naive mice: mechanisms of selection of the self‐reactive repertoire. J. Exp. Med. 2000. 191: 761 – 770.en_US
dc.identifier.citedreferenceSarma, S., Guo, Y., Guilloux, Y., Lee, C., Bai, X. F. and Liu, Y., Cytotoxic T lymphocytes to an unmutated tumor rejection antigen P1A: normal development but restrained effector function in vivo. J. Exp. Med. 1999. 189: 811 – 820.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.