Colorimetric Detection of Warfare Gases by Polydiacetylenes Toward Equipment‐Free Detection
dc.contributor.author | Lee, Jiseok | en_US |
dc.contributor.author | Seo, Sungbaek | en_US |
dc.contributor.author | Kim, Jinsang | en_US |
dc.date.accessioned | 2012-05-21T15:49:23Z | |
dc.date.available | 2013-06-11T19:15:53Z | en_US |
dc.date.issued | 2012-04-24 | en_US |
dc.identifier.citation | Lee, Jiseok; Seo, Sungbaek; Kim, Jinsang (2012). "Colorimetric Detection of Warfare Gases by Polydiacetylenes Toward Equipment‐Free Detection." Advanced Functional Materials 22(8): 1632-1638. <http://hdl.handle.net/2027.42/91204> | en_US |
dc.identifier.issn | 1616-301X | en_US |
dc.identifier.issn | 1616-3028 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/91204 | |
dc.description.abstract | Rationally designed polydiacetylene (PDA) molecules have been developed for rapid, selective, sensitive, and convenient colorimetric detection of organophosphate (OP) nerve agents, a mass destruction weapon. Oxime (OX) functionality was incorporated into diacetylene molecules to utilize its strong affinity toward organophosphates. The diacetylene molecules having an OX functional group (OX‐PDA) were self‐assembled to form PDA liposomes in an aqueous solution. Upon exposure to organophosphate nerve agent simulants, OX at the OX‐PDA liposome surface interacts with nerve agent simulants, which results in intraliposomal repulsive stress due to steric repulsion between OP‐occupied OX units at the liposome surface as well as interliposomal aggregation induced by increased hydrophobicity of the liposome surface via OP‐OX complex formation. The resulting intra‐ and interliposomal stress causes disturbance of the conjugated backbone of OX‐PDA, producing color change as a label‐free and sensitive sensory signal. The effects of molecular structure on selectivity and sensitivity of OX‐PDA liposome solution, OX‐PDA liposome‐embedded agarose gels, and OX‐PDA liposome‐coated cellulose acetate membranes were systematically investigated. The optimized OX‐PDA liposome in the solid state showed selective and rapid optical transition upon exposure down to 160 ppb of diisopropylfluorophosphate (DFP), a nerve agent simulant. The results provide an insightful molecular design principle of PDA‐based colorimetric sensor and suggest portable sensory patches for rapid, selective, sensitive, and convenient colorimetric detection of organophosphate nerve agents. Polydiacetylene (PDA) liposomes having oxime (OX) functionality are rationally designed and synthesized to selectively and sensitively detect organophosphate (OP) nerve agents. Solutions, gel‐pads, and solid films of OX‐PDA liposome demonstrate convenient, rapid, selective, and sensitive colorimetric detection of nerve agent simulants through intra‐liposomal repulsion and interliposomal hydrophobic aggregation. | en_US |
dc.publisher | WILEY‐VCH Verlag | en_US |
dc.subject.other | Self‐Assembly | en_US |
dc.subject.other | Oxime | en_US |
dc.subject.other | Nerve Agents | en_US |
dc.subject.other | Polydiacetylene | en_US |
dc.subject.other | Liposomes | en_US |
dc.title | Colorimetric Detection of Warfare Gases by Polydiacetylenes Toward Equipment‐Free Detection | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Engineering (General) | en_US |
dc.subject.hlbsecondlevel | Materials Science and Engineering | en_US |
dc.subject.hlbtoplevel | Engineering | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Macromolecular Science and Engineering, Materials Science and Engineering, Chemical Engineering, Biomedical Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109‐2136, USA | en_US |
dc.contributor.affiliationum | Macromolecular Science and Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109‐2136, USA | en_US |
dc.contributor.affiliationum | Macromolecular Science and Engineering, Materials Science and Engineering, Chemical Engineering, Biomedical Engineering, University of Michigan, 2300 Hayward St., Ann Arbor, MI 48109‐2136, USA. | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/91204/1/adfm_201102486_sm_suppl.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/91204/2/1632_ftp.pdf | |
dc.identifier.doi | 10.1002/adfm.201102486 | en_US |
dc.identifier.source | Advanced Functional Materials | en_US |
dc.identifier.citedreference | a) D. Seo, J. Kim, Adv. Funct. Mater. 2010, 20, 1397; b) J. Lee, E. Jeong Jeong, J. Kim, Chem. Commun. 2011. | en_US |
dc.identifier.citedreference | J. Bajgar, in Advances in Clinical Chemistry,Vol. 38 (Ed: S. M. Gregory ), Elsevier, 2004, pp. 151. | en_US |
dc.identifier.citedreference | R. Subramaniam, C. Åstot, L. Juhlin, C. Nilsson, A. Östin, Anal. Chem. 2010, 82, 7452. | en_US |
dc.identifier.citedreference | W. A. Harris, P. T. A. Reilly, W. B. Whitten, Anal. Chem. 2007, 79, 2354. | en_US |
dc.identifier.citedreference | a) T. J. Dale, J. Rebek, J. Am. Chem. Soc. 2006, 128, 4500; b) T. Dale, J. Rebek, Angew. Chem. Int. Ed. 2009, 48, 7850; c) S.‐W. Zhang, T. M. Swager, J. Am. Chem. Soc. 2003, 125, 3420. | en_US |
dc.identifier.citedreference | K. A. Joshi, M. Prouza, M. Kum, J. Wang, J. Tang, R. Haddon, W. Chen, A. Mulchandani, Anal. Chem. 2005, 78, 331. | en_US |
dc.identifier.citedreference | Y. Yang, H.‐F. Ji, T. Thundat, J. Am. Chem. Soc. 2003, 125, 1124. | en_US |
dc.identifier.citedreference | K. D. Cadwell, N. A. Lockwood, B. A. Nellis, M. E. Alf, C. R. Willis, N. L. Abbott, Sens. Actuators, B 2007, 128, 91. | en_US |
dc.identifier.citedreference | a) B. Yoon, S. Lee, J.‐M. Kim, Chem. Soc. Rev. 2009, 38, 1958; b) M. A. Reppy, B. A. Pindzola, Chem. Commun. 2007, 4317; c) K. Lee, L. K. Povlich, J. Kim, Analyst 2010, 135, 2179. | en_US |
dc.identifier.citedreference | a) R. R. Chance, Macromolecules 1980, 13, 396; b) J. Olmsted, M. Strand, J. Phys. Chem. 1983, 87, 4790. | en_US |
dc.identifier.citedreference | a) D. Meir, L. Silbert, R. Volinsky, S. Kolusheva, I. Weiser, R. Jelinek, J. Appl. Micro. 2008, 104, 787; b) S. Kolusheva, T. Shahal, R. Jelinek, J. Am. Chem. Soc. 2000, 122, 776. | en_US |
dc.identifier.citedreference | D. J. Ahn, E.‐H. Chae, G. S. Lee, H.‐Y. Shim, T.‐E. Chang, K.‐D. Ahn, J.‐M. Kim, J. Am. Chem. Soc. 2003, 125, 8976. | en_US |
dc.identifier.citedreference | a) S. Lee, J.‐M. Kim, Macromolecules 2007, 40, 9201; b) J.‐M. Kim, J.‐S. Lee, H. Choi, D. Sohn, D. J. Ahn, Macromolecules 2005, 38, 9366; c) J. Pang, L. Yang, B. F. McCaughey, H. Peng, H. S. Ashbaugh, C. J. Brinker, Y. Lu, J. Phys. Chem. B 2006, 110, 7221; d) H. Peng, X. Sun, F. Cai, X. Chen, Y. Zhu, G. Liao, D. Chen, Q. Li, Y. Lu, Y. Zhu, Q. Jia, Nat. Nanotechnol 2009, 4, 738. | en_US |
dc.identifier.citedreference | a) J. Lee, H. Jun, J. Kim, Adv. Mater. 2009, 21, 3674; b) J. Lee, H.‐J. Kim, J. Kim, J. Am. Chem. Soc. 2008, 130, 5010. | en_US |
dc.identifier.citedreference | a) K. Tashiro, H. Nishimura, M. Kobayashi, Macromolecules 1996, 29, 8188; b) R. W. Carpick, D. Y. Sasaki, A. R. Burns, Langmuir 2000, 16, 1270; c) R. W. Carpick, D. Y. Sasaki, M. S. Marcus, M. A. Eriksson, A. R. Burns, J. Phys.: Condens. Matter 2004, 16, R679. | en_US |
dc.identifier.citedreference | D. Milatovic, M. Jokanovic, in Handbook of Toxicology of Chemical Warfare Agents, (Ed: C. G. Ramesh ), Academic Press, San Diego 2009, pp. 985. | en_US |
dc.identifier.citedreference | F. Terrier, P. Rodriguez‐Dafonte, E. Le Guevel, G. Moutiers, Org. Biomol. Chem. 2006, 4, 4352. | en_US |
dc.identifier.citedreference | A. G. Smith, P. A. Tasker, D. J. White, Coord. Chem. Rev. 2003, 241, 61. | en_US |
dc.identifier.citedreference | I. Oh, R. I. Masel, Electrochem. Solid‐State Lett. 2007, 10, J19. | en_US |
dc.identifier.citedreference | J. Brodeur, K. P. DuBois, J. Occup. Environ. Med. 1964, 6, 164. | en_US |
dc.identifier.citedreference | J. B. Leikin, R. G. Thomas, F. G. Walter, R. Klein, H. W. Meislin, Crit. Care Med. 2002, 30, 2346. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.