Show simple item record

Bioenergetics in diabetic neuropathy: what we need to know

dc.contributor.authorHinder, Lucy M.en_US
dc.contributor.authorVincent, Andrea M.en_US
dc.contributor.authorBurant, Charles F.en_US
dc.contributor.authorPennathur, Subramaniamen_US
dc.contributor.authorFeldman, Eva L.en_US
dc.date.accessioned2012-05-21T15:49:30Z
dc.date.available2013-07-01T14:33:06Zen_US
dc.date.issued2012-05en_US
dc.identifier.citationHinder, Lucy M.; Vincent, Andrea M.; Burant, Charles F.; Pennathur, Subramaniam; Feldman, Eva L. (2012). "Bioenergetics in diabetic neuropathy: what we need to know." Journal of the Peripheral Nervous System 17. <http://hdl.handle.net/2027.42/91209>en_US
dc.identifier.issn1085-9489en_US
dc.identifier.issn1529-8027en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91209
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.subject.otherBioenergeticsen_US
dc.subject.otherDiabetesen_US
dc.subject.otherDiabetic Neuropathyen_US
dc.subject.otherEnergy Metabolismen_US
dc.subject.otherOxidative Stressen_US
dc.subject.otherSubstrate Utilizationen_US
dc.titleBioenergetics in diabetic neuropathy: what we need to knowen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Internal Medicine, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Neurologyen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91209/1/j.1529-8027.2012.00389.x.pdf
dc.identifier.doi10.1111/j.1529-8027.2012.00389.xen_US
dc.identifier.sourceJournal of the Peripheral Nervous Systemen_US
dc.identifier.citedreferenceSullivan KA, Hayes JM, Wiggin TD, Backus C, Su Oh S, Lentz SI, Brosius F III, Feldman EL ( 2007 ). Mouse models of diabetic neuropathy. Neurobiol Dis 28: 276 – 285.en_US
dc.identifier.citedreferenceKern TS, Engerman RL ( 1982 ). Immunohistochemical distribution of aldose reductase. Histochem J 14: 507 – 515.en_US
dc.identifier.citedreferenceKishi Y, Schmelzer JD, Yao JK, Zollman PJ, Nickander KK, Tritschler HJ, Low PA ( 1999 ). Alpha‐lipoic acid: effect on glucose uptake, sorbitol pathway, and energy metabolism in experimental diabetic neuropathy. Diabetes 48: 2045 – 2051.en_US
dc.identifier.citedreferenceMagnani P, Cherian PV, Gould GW, Greene DA, Sima AAF, Brosius FC ( 1996 ). Glucose transporters in rat peripheral nerve: paranodal expression of GLUT1 and GLUT3. Metabolism 45: 1466 – 1473.en_US
dc.identifier.citedreferenceMurea M, Freedman BI, Parks JS, Antinozzi PA, Elbein SC, Ma L ( 2010 ). Lipotoxicity in diabetic nephropathy: the potential role of fatty acid oxidation. Clin J Am Soc Nephrol 5: 2373 – 2379.en_US
dc.identifier.citedreferenceNishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M ( 2000 ). Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404: 787 – 790.en_US
dc.identifier.citedreferenceObrosova IG, Pacher P, Szabo C, Zsengeller Z, Hirooka H, Stevens MJ, Yorek MA ( 2005 ). Aldose reductase inhibition counteracts oxidative‐nitrosative stress and poly(ADP‐ribose) polymerase activation in tissue sites for diabetes complications. Diabetes 54: 234 – 242.en_US
dc.identifier.citedreferenceOla MS, Berkich DA, Xu Y, King MT, Gardner TW, Simpson I, LaNoue KF ( 2006 ). Analysis of glucose metabolism in diabetic rat retinas. Am J Physiol Endocrinol Metab 290: E1057 – 1067.en_US
dc.identifier.citedreferenceSaid G ( 2007 ). Diabetic neuropathy–a review. Nat Clin Pract Neurol 3: 331 – 340.en_US
dc.identifier.citedreferenceShun CT, Chang YC, Wu HP, Hsieh SC, Lin WM, Lin YH, Tai TY, Hsieh ST ( 2004 ). Skin denervation in type 2 diabetes: correlations with diabetic duration and functional impairments. Brain 127: 1593 – 1605.en_US
dc.identifier.citedreferenceSimpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ ( 2008 ). The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab 295: E242 – 253.en_US
dc.identifier.citedreferenceStevens MJ, Dananberg J, Feldman EL, Lattimer SA, Kamijo M, Thomas TP, Shindo H, Sima AAF, Greene DA ( 1994 ). The linked roles of nitric oxide, aldose reductase and (Na +, K + )‐ATPase in the slowing of nerve conduction in the streptozotocin diabetic rat. J Clin Invest 94: 853 – 859.en_US
dc.identifier.citedreferenceThurston JH, McDougal DB Jr. Hauhart RE, Schulz DW ( 1995 ). Effects of acute, subacute, and chronic diabetes on carbohydrate and energy metabolism in rat sciatic nerve. Relation to mechanisms of peripheral neuropathy. Diabetes 44: 190 – 195.en_US
dc.identifier.citedreferenceTomlinson DR, Gardiner NJ ( 2008 ). Glucose neurotoxicity. Nat Rev Neurosci 9: 36 – 45.en_US
dc.identifier.citedreferenceTretter L, Adam‐Vizi V ( 2004 ). Generation of reactive oxygen species in the reaction catalyzed by alpha‐ketoglutarate dehydrogenase. J Neurosci 24: 7771 – 7778.en_US
dc.identifier.citedreferenceTretter L, Adam‐Vizi V ( 2005 ). Alpha‐ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans R Soc Lond B Biol Sci 360: 2335 – 2345.en_US
dc.identifier.citedreferenceTsai SC, Burnakis TG ( 1993 ). Aldose reductase inhibitors: an update. Ann Pharmacother 27: 751 – 754.en_US
dc.identifier.citedreferencevan de Weijer T, Schrauwen‐Hinderling VB, Schrauwen P ( 2011 ). Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res 92: 10 – 18.en_US
dc.identifier.citedreferenceVincent AM, Callaghan BC, Smith AL, Feldman EL ( 2011 ). Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol 7: 573 – 583.en_US
dc.identifier.citedreferenceVincent AM, Feldman EL ( 2004 ). New insights into the mechanisms of diabetic neuropathy. Rev Endocr Metab Disord 5: 227 – 236.en_US
dc.identifier.citedreferenceVincent AM, Hinder LM, Pop‐Busui R, Feldman EL ( 2009 ). Hyperlipidemia: a new therapeutic target for diabetic neuropathy. J Peripher Nerv Syst 14: 257 – 267.en_US
dc.identifier.citedreferenceVincent AM, McLean LL, Backus C, Feldman EL ( 2005 ). Short‐term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J 19: 638 – 640.en_US
dc.identifier.citedreferenceVincent AM, Olzmann JA, Brownlee M, Sivitz WI, Russell JW ( 2004a ). Uncoupling proteins prevent glucose‐induced neuronal oxidative stress and programmed cell death. Diabetes 53: 726 – 734.en_US
dc.identifier.citedreferenceVincent AM, Russell JW, Low P, Feldman EL ( 2004b ). Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 25: 612 – 628.en_US
dc.identifier.citedreferenceYoung MJ, Boulton AJ, MacLeod AF, Williams DR, Sonksen PH ( 1993 ). A multicentre study of the prevalence of diabetic peripheral neuropathy in the United Kingdom hospital clinic population. Diabetologia 36: 150 – 154.en_US
dc.identifier.citedreferenceYudkoff M, Nelson D, Daikhin Y, Erecinska M ( 1994 ). Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle. J Biol Chem 269: 27414 – 27420.en_US
dc.identifier.citedreferenceBoulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D ( 2005 ). Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care 28: 956 – 962.en_US
dc.identifier.citedreferenceBrownlee M ( 2001 ). Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813 – 820.en_US
dc.identifier.citedreferenceChisholm DJ ( 1993 ). The Diabetes Control and Complications Trial (DCCT). A milestone in diabetes management. Med J Aust 159: 721 – 723.en_US
dc.identifier.citedreferenceDu XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M ( 2001 ). Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 108: 1341 – 1348.en_US
dc.identifier.citedreferenceDu XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J, Brownlee M ( 2000 ). Hyperglycemia‐induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor‐1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A 97: 12222 – 12226.en_US
dc.identifier.citedreferenceEdwards JL, Vincent AM, Cheng HT, Feldman EL ( 2008 ). Diabetic neuropathy: mechanisms to management. Pharmacol Ther 120: 1 – 34.en_US
dc.identifier.citedreferenceEpidemiology of Diabetes Interventions and Complications (EDIC) ( 1999 ). Design, implementation, and preliminary results of a long‐term follow‐up of the Diabetes Control and Complications Trial cohort. Diabetes Care 22: 99 – 111.en_US
dc.identifier.citedreferenceErecinska M, Nelson D, Deas J, Silver IA ( 1996 ). Limitation of glycolysis by hexokinase in rat brain synaptosomes during intense ion pumping. Brain Res 726: 153 – 159.en_US
dc.identifier.citedreferenceFeldman EL ( 2008 ). Diabetic neuropathy. Curr Drug Targets 9: 1 – 2.en_US
dc.identifier.citedreferenceFeldman EL, Stevens MJ, Russell JW, Greene DA ( 2003 ). Somatosensory neuropathy. In: Ellenberg and Rifkin's Diabetes Mellitus. Porte D Jr, Sherwin RS, Baron A (Eds). McGraw Hill. p. 771 – 788.en_US
dc.identifier.citedreferenceGardiner NJ, Wang Z, Luke C, Gott A, Price SA, Fernyhough P ( 2007 ). Expression of hexokinase isoforms in the dorsal root ganglion of the adult rat and effect of experimental diabetes. Brain Res 1175: 143 – 154.en_US
dc.identifier.citedreferenceGardner PR, Fridovich I ( 1992 ). Inactivation‐reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J Biol Chem 267: 8757 – 8763.en_US
dc.identifier.citedreferenceGardner PR, Raineri I, Epstein LB, White CW ( 1995 ). Superoxide radical and iron modulate aconitase activity in mammalian cells. J Biol Chem 270: 13399 – 13405.en_US
dc.identifier.citedreferenceGreene DA, Lattimer SA ( 1983 ). Impaired rat sciatic nerve sodium‐potassium adenosine triphosphatase in acute streptozocin diabetes and its correction by dietary myo‐inositol supplementation. J Clin Invest 72: 1058 – 1063.en_US
dc.identifier.citedreferenceGreene DA, Lattimer SA ( 1984 ). Impaired energy utilization and Na‐K‐ATPase in diabetic peripheral nerve. Am J Physiol 246: E311 – 318.en_US
dc.identifier.citedreferenceGreene DA, Lattimer SA ( 1986 ). Protein kinase C agonists acutely normalize decreased ouabain‐inhibitable respiration in diabetic rabbit nerve. Implications for (Na,K)‐ATPase regulation and diabetic complications. Diabetes 35: 242 – 245.en_US
dc.identifier.citedreferenceGreene DA, Lattimer SA, Sima AA ( 1987 ). Sorbitol, phosphoinositides, and sodium‐potassium‐ATPase in the pathogenesis of diabetic complications. N Engl J Med 316: 599 – 606.en_US
dc.identifier.citedreferenceGreene DA, Winegrad AI ( 1979 ). In vitro studies of the substrates for energy production and the effects of insulin on glucose utilization in the neural components of peripheral nerve. Diabetes 28: 878 – 887.en_US
dc.identifier.citedreferenceGreene DA, Yagihashi S, Lattimer SA, Sima AA ( 1984 ). Nerve Na+‐K+‐ATPase, conduction, and myo‐inositol in the insulin‐deficient BB rat. Am J Physiol 247: E534 – E539.en_US
dc.identifier.citedreferenceIzawa Y, Takahashi S, Suzuki N ( 2009 ). Pioglitazone enhances pyruvate and lactate oxidation in cultured neurons but not in cultured astroglia. Brain Res 1305: 64 – 73.en_US
dc.identifier.citedreferenceJohnson PC, Doll SC, Cromey DW ( 1986 ). Pathogenesis of diabetic neuropathy. Ann Neurol 19: 450 – 457.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.