Show simple item record

Synaptic vesicles are capable of synthesizing the VGLUT substrate glutamate from α‐ketoglutarate for vesicular loading

dc.contributor.authorTakeda, Koujien_US
dc.contributor.authorIshida, Atsuhikoen_US
dc.contributor.authorTakahashi, Kentoen_US
dc.contributor.authorUeda, Tetsufumien_US
dc.date.accessioned2012-05-21T15:49:34Z
dc.date.available2013-06-11T19:15:53Zen_US
dc.date.issued2012-04en_US
dc.identifier.citationTakeda, Kouji; Ishida, Atsuhiko; Takahashi, Kento; Ueda, Tetsufumi (2012). "Synaptic vesicles are capable of synthesizing the VGLUT substrate glutamate from α‐ketoglutarate for vesicular loading." Journal of Neurochemistry 121(2). <http://hdl.handle.net/2027.42/91212>en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91212
dc.description.abstractSynaptic vesicle loading of glutamate is a pivotal step in glutamate synaptic transmission. The molecular machinery responsible for this step is comprised of v‐type proton‐pump ATPase and a vesicular glutamate transporter. Recent evidence indicates that synaptic vesicles are endowed with glycolytic ATP‐synthesizing enzymes, providing energy for immediate use by vesicle‐bound proton‐pump ATPase. In this study, we provide evidence that synaptic vesicles are also capable of synthesizing the vesicular glutamate transporter substrate glutamate, from α‐ketoglutarate and l ‐aspartate (as the amino group donor); glutamate thus produced is taken up into vesicles. We also report a finding that α‐ketoglutarate‐derived glutamate uptake into synaptic vesicles and aspartate aminotransferase are inhibited by 2,3‐pyrazinedicarboxylate. Evidence is given that this is a selective inhibitor for aspartate aminotransferase. These observations provide insight into understanding the nerve endings’ mechanism for high efficiency in glutamate transmission. Finding this inhibitor may have implications for further experimentation on the role of α‐ketoglutarate‐derived glutamate in glutamate transmission. Synaptic vesicle loading of glutamate is the first step in glutamate synaptic transmission. We provide evidence that the VGLUT substrate glutamate is locally synthesized on the surface of vesicles from α‐ketoglutarate and aspartate by aspartate aminotransferase, and taken up into vesicles, indicating high efficiency in glutamate transmission. We have also found that 2,3‐pyrazinedicarboxylate inhibits this synthetic enzyme. Finding this inhibitor has important implications for defining the role of vesicle‐bound aspartate aminotransferase in glutamate transmission.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.subject.otherGOTen_US
dc.subject.otherNeurotransmitteren_US
dc.subject.otherPrecursoren_US
dc.subject.otherBiosynthesisen_US
dc.subject.otherLocal Synthesisen_US
dc.titleSynaptic vesicles are capable of synthesizing the VGLUT substrate glutamate from α‐ketoglutarate for vesicular loadingen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pharmacology, Medical School, The University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationumMolecular & Behavioral Neuroscience Institute, Medical School, The University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationumDepartment of Psychiatry, Medical School, The University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherLaboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi‐Hiroshima, Japanen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91212/1/j.1471-4159.2012.07684.x.pdf
dc.identifier.doi10.1111/j.1471-4159.2012.07684.xen_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceRoberts E. and Simonsen D. G. ( 1963 ) Some properties of L‐glutamic decarboxylase in mouse brain. Biochem. Pharmacol. 12, 113 – 134.en_US
dc.identifier.citedreferenceOzkan E. D. and Ueda T. ( 1998 ) Glutamate transport and storage in synaptic vesicles. Jpn. J. Pharmacol. 77, 1 – 10.en_US
dc.identifier.citedreferencePalaiologos G., Hertz L. and Schousboe A. ( 1988 ) Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate. J. Neurochem. 51, 317 – 320.en_US
dc.identifier.citedreferencePanteghin M. ( 1990 ) Aspartate aminotransferase isoezymes. Clin. Biochem. 23, 311 – 319.en_US
dc.identifier.citedreferencePeng L., Schousboe A. and Hertz L. ( 1991 ) Utilization of alpha‐ketoglutarate as a precursor for transmitter glutamate in cultured cerebellar granule cells. Neurochem. Res., 16, 29 – 34.en_US
dc.identifier.citedreferenceRej R. and Hφrder M. ( 1983 ) Aspartate aminotransferase, in Methods of Enzymatic Analysis, 3rd edn ( Bermeyer J. and Graßl M., eds), Vol. III, pp. 416 – 427. Verlag Chemie GmbH, Weinheim.en_US
dc.identifier.citedreferenceRoberg B., Torgner I. A. and Kvamme E. ( 1995 ) The orientation of phosphate activated glutaminase in the inner mitochondrial membrane of synaptic and non‐synaptic rat brain mitochondria. Neurochem. Int. 27, 367 – 376.en_US
dc.identifier.citedreferenceRoseth S., Fykse E. M. and Fonnum F. ( 1998 ) Uptake of L‐glutamate into synaptic vesicles: Competitive inhibition by dyes with biphenyl and amino‐and sulphonic acid‐substituted naphthyl groups. Biochem. Pharmacol. 56, 1243 – 1249.en_US
dc.identifier.citedreferenceSchenck S., Wojcik S. M., Brose N. and Takamori S. ( 2009 ) A chloride conductance in VGLUT1 underlies maximal glutamate loading into synaptic vesicles. Nat. Neurosci. 12, 156 – 162.en_US
dc.identifier.citedreferenceSchousboe A., Westergaard N., Waagepetersen H., Larsson O. M., Bakken I. J. and Sonnewald U. ( 1997 ) Trafficking between glia and neurons of TCA cycle intermediates and related metabolites. Glia 21, 99 – 105.en_US
dc.identifier.citedreferenceShank R. P. and Aprison M. H. ( 1988 ). Glutamate as a neurotransmitter, in Glutamine and Glutamate in Mammals ( Kvamme E., ed.), Vol. II, pp. 3 – 20. CRC Press, Boca Raton.en_US
dc.identifier.citedreferenceShank R. P. and Campbell G. L. ( 1984 ) Alpha‐ketoglutarate and malate uptake and metabolism by synaptosomes: further evidence for an astrocyte‐to‐neuron metabolic shuttle. J. Neurochem. 42, 1153 – 1161.en_US
dc.identifier.citedreferenceSibson N. R., Dhankhar A., Mason G. F., Behar K. L., Rothman D. L. and Shulman R. G. ( 1997 ) In vivo 13 C NMR measurements of cerebral glutamine synthesis as evidence for glutamate–glutamine cycling. Proc. Natl. Acad. Sci. U S A 94, 2699 – 2704.en_US
dc.identifier.citedreferenceTabb J. S. and Ueda T. ( 1991 ) Phylogenetic studies on the synaptic vesicle glutamate transport system. J. Neurosci. 11, 1822 – 1828.en_US
dc.identifier.citedreferenceTabb J. S., Kish P. E., Van Dyke R. and Ueda T. ( 1992 ) Glutamate transport into synaptic vesicles. Roles of membrane potential, pH gradient and intravesicular pH. J. Biol. Chem. 267, 15412 – 15418.en_US
dc.identifier.citedreferenceTaguchi T., Miyake K., Tanonaka K., Okada M., Takagi N., Fujimori K. and Takeo S. ( 1993 ) Sustained changes in acetylcholine and amino acid contents of brain regions following microsphere embolism in rats. Jpn. J. Pharmacol. 62, 269 – 78.en_US
dc.identifier.citedreferenceTakamori S., Rhee J. S., Rosenmund C. and Jahn R. ( 2000 ) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407, 189 – 194.en_US
dc.identifier.citedreferenceTakamori S. et al. ( 2006 ) Molecular Anatomy of a Trafficking Organelle. Cell 127, 831 – 846.en_US
dc.identifier.citedreferenceUeda T. ( 1986 ) Glutamate transport in the synaptic vesicle, in Excitatory Amino Acids ( Roberts P. J., Storm‐Mathisen J. and Bradford H. F., eds), pp. 173 – 195. Macmillan, London.en_US
dc.identifier.citedreferenceUeda T. and Ikemoto A. ( 2007 ) Cytoplasmic glycolytic enzymes. Synaptic vesicle‐associated glycolytic ATP‐generating enzymes: Coupling to neurotransmitter accumulation, in Handbook of Neurochemistry and Molecular Neurobiology, 3rd edn, Brain Energetics, Cellular and Molecular Integration ( Gibson G. and Dienel G., eds), pp. 241 – 259. Springer, Heidelberg.en_US
dc.identifier.citedreferenceUeda T., Greengard P., Berzins K., Cohen R. S., Blomberg F., Grab D. J. and Siekevitz P. ( 1979 ) Subcellular distribution in cerebral cortex of two proteins phosphorylated by a cAMP‐dependent protein kinase. J. Cell Biol. 83, 308 – 319.en_US
dc.identifier.citedreferenceVaroqui H., Zhu H., Yao D., Ming H. and Erickson J. D. ( 2000 ) Cloning and functional identification of a neuronal glutamine transporter. J. Biol. Chem. 275, 4049 – 4054.en_US
dc.identifier.citedreferenceVogel R., Jennemann G., Seitz J., Wiesinger H. and Hamprecht B. ( 1998 ) Mitochondrial malic enzyme: purification from bovine brain, generation of an antiserum, and immunocytochemical localization in neurons of rat brain. J. Neurochem. 71, 844 – 852.en_US
dc.identifier.citedreferenceWestergaard N., Sonnewald U. and Schousboe A. ( 1994 ) Release of α‐ketoglutarate, malate and succinate from cultured astrocytes: possible role in amino acid neurotransmitter homeostasis. Neurosci. Lett. 176, 105 – 09.en_US
dc.identifier.citedreferenceWinter H. C. and Ueda T. ( 1993 ) Glutamate uptake system in the presynaptic vesicle: glutamic acid analogs as inhibitors and alternate substrates. Neurochem. Res. 18, 79 – 85.en_US
dc.identifier.citedreferenceWinter H. C. and Ueda T. ( 2008 ) The glutamate uptake system in synaptic vesicles: further characterization of structural requirements for inhibitors and substrates. Neurochem. Res. 33, 223 – 231.en_US
dc.identifier.citedreferenceYudkoff M., Nelson D., Daikhin Y. and Erecinska M. ( 1994 ) Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle. J. Biol. Chem. 269, 27414 – 27420.en_US
dc.identifier.citedreferenceBeeler T. and Churchich J. F. ( 1976 ) Reactivity of the phosphopyridoxal groups ofcystathionase. J. Biol. Chem. 251, 5267 – 5271.en_US
dc.identifier.citedreferenceBellocchio E. E., Reimer R. J., Fremeau R. T., Jr and Edwards R. H. ( 2000 ) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289, 957 – 960.en_US
dc.identifier.citedreferenceBenjamin A. M. and Quastel J. H. ( 1972 ) Locations of amino acids in brain slices from the rat. Biochem. J. 128, 631 – 646.en_US
dc.identifier.citedreferenceBerwin B., Floor E. and Martin T. F. J. ( 1998 ) CAPS (Mammalian UNC‐31) Protein localizes to membranes involved in dense‐core vesicle exocytosis. Neuron 21, 137 – 145.en_US
dc.identifier.citedreferenceBolli R., Narecz K. A. and Azzi A. ( 1989 ) Monocarboxylate and α‐ketoglutarate carriers from bovine heart mitochondria. Purification by affinity chromatography on immobilized 2‐cyano‐4‐hydroxycinnamate. J. Biol. Chem. 264, 18024 – 8030.en_US
dc.identifier.citedreferenceBradford M. M. ( 1976 ) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding. Anal. Biochem. 72, 248 – 254.en_US
dc.identifier.citedreferenceBradford H. F. and Ward H. K. ( 1976 ) On glutaminase activity in mammalian synaptosomes. Brain Res. 110, 115 – 125.en_US
dc.identifier.citedreferenceBradford H. F., Ward H. K. and Thomas A. J. ( 1978 ) Glutamine – a major substrate for nerve endings. J. Neurochem. 30, 1453 – 1459.en_US
dc.identifier.citedreferenceBurré J., Beckhaus T., Schägger H., Corvey C., Hofmann S., Karas M., Zimmermann H. and Volknandt W. ( 2006 ) Analysis of the synaptic vesicle proteome using three gel‐based protein separation techniques. Proteomics 6, 6250 – 6262.en_US
dc.identifier.citedreferenceCesar M. and Hamprecht B. ( 1995 ) Immunocytochemical examination of neural rat and mouse primary cultures using monoclonal antibodies raised against pyruvate carboxylase. J. Neurochem. 64, 2312 – 2318.en_US
dc.identifier.citedreferenceCurthoys N. P. and Lowry O. H. ( 1973 ) The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney. J. Biol. Chem. 248, 162 – 168.en_US
dc.identifier.citedreferenceDanbolt N. C. ( 2001 ) Glutamate uptake. Prog. Neurobiol. 65, 1 – 105.en_US
dc.identifier.citedreferenceDennis S. C., Lai J. C. and Clark J. B. ( 1977 ) Comparative studies on glutamate metabolism in synpatic and non‐synaptic rat brain mitochondria. Biochem. J. 164, 727 – 736.en_US
dc.identifier.citedreferenceDunkley P. R., Jarvie P. E. and Robinson P. J. ( 2008 ) A rapid Percoll gradient procedure for preparation of synaptosomes. Nat. Protoc. 3, 1718 – 1728.en_US
dc.identifier.citedreferenceEdwards R. H. ( 2007 ) The neurotransmitter cycle and quantal size. Neuron 55, 835 – 858.en_US
dc.identifier.citedreferenceHamberger A. C., Chiang G. H., Nylén E. S., Scheff S. W. and Cotman C. W. ( 1979 ) Glutamate as a CNS transmitter. I. Evaluation of glucose and glutamine as precursors for the synthesis of preferentially released glutamate. Brain Res. 168, 513 – 530.en_US
dc.identifier.citedreferenceHarlow E. and Lane D. ( 1988 ) Antibodies: A Laboratory Manual. Cold Spring Harbor Laboratory, New York.en_US
dc.identifier.citedreferenceHassel B. and Brathe A. ( 2000 ) Neuronal pyruvate carboxylation supports formation of transmitter glutamate. J. Neurosci. 20, 1342 – 1347.en_US
dc.identifier.citedreferenceHayashi H., Wada H., Yoshimura T., Esaki N. and Soda K. ( 1990 ) Recent topics in pyridoxal 5’‐phosphate enzyme studies. Annu. Rev. Biochem. 59, 87 – 110.en_US
dc.identifier.citedreferenceHertz L. and Zielke H. R. ( 2004 ) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci. 27, 735 – 743.en_US
dc.identifier.citedreferenceIkemoto A., Bole D. G. and Ueda T. ( 2003 ) Glycolysis and glutamate accumulation into synaptic vesicles: Role of glyceraldehyde phosphate dehydrogenase and 3‐phosphoglycerate kinase. J. Biol. Chem. 278, 5929 – 5940.en_US
dc.identifier.citedreferenceIshida A., Noda Y. and Ueda T. ( 2009 ) Synaptic vesicle‐bound pyruvate kinase can support vesicular glutamate uptake. Neurochem. Res. 34, 807 – 818.en_US
dc.identifier.citedreferenceJohn R. A., Charteris A. and Fowler L. J. ( 1978 ) The reaction of amino‐oxyacetate with pyridoxal phosphate‐dependent enzymes. Biochem. J. 171, 771 – 779.en_US
dc.identifier.citedreferenceJuge N., Yoshida Y., Yatsushiro S., Omote H. and Moriyama Y. ( 2006 ) Vesicular glutamate transporter contains two independent transport machineries. J. Biol. Chem. 281, 39499 – 39506.en_US
dc.identifier.citedreferenceKam K. and Nicoll R. ( 2007 ) Excitatory synaptic transmission persists independently of the glutamate‐glutamine cycle. J. Neurosci. 27, 9192 – 9200.en_US
dc.identifier.citedreferenceKish P. E. and Ueda T. ( 1989 ) Glutamate accumulation into synaptic vesicles. Methods Enzymol. 174, 9 – 25.en_US
dc.identifier.citedreferenceLaake J. H., Slyngstad T. A., Haug F. M. and Ottersen O. P. ( 1995 ) Glutamine from glial cells Is essential for the maintenance of the nerve terminal pool of glutamate: immunogold evidence from hippocampal slice cultures. J. Neurochem. 65, 871 – 881.en_US
dc.identifier.citedreferenceLai J. C. and Clark J. B. ( 1979 ) Preparation of synaptic and nonsynaptic mitochondria from mammalian brain. Methods Enzymol. 55, 51 – 60.en_US
dc.identifier.citedreferenceLeinweber F. J. ( 1968 ) Mechanism of histidine decarboxylase inhibition by NSD‐1055 and related hydroxylamines. Mol. Pharmacol. 4, 337 – 348.en_US
dc.identifier.citedreferenceLewis S. M. and Ueda T. ( 1998 ) Solubilization and reconstitution of synaptic vesicle glutamate transport system. Methods Enzymol. 296, 125 – 144.en_US
dc.identifier.citedreferenceMagee S. C. and Phillips A. T. ( 1971 ) Molecular properties of the multiple aspartate aminotransferases purified from rat brain. Biochemistry 31, 3397 – 3405.en_US
dc.identifier.citedreferenceMartinez‐Hernandez A., Bell K. P. and Norenberg M. D. ( 1977 ) Glutamine synthetase: glial localization in brain. Science 195, 1356 – 1358.en_US
dc.identifier.citedreferenceMasson J., Darmon M., Conjard A. et al. ( 2006 ) Mice lacking brain/kidney phosphate‐activated glutaminase have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal‐directed behavior and die shortly after birth. J. Neurosci. 26, 4660 – 4671.en_US
dc.identifier.citedreferenceMaycox P. R., Deckwert T., Hell J. W. and Jahn R. ( 1988 ) Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J. Biol. Chem. 263, 15423 – 15428.en_US
dc.identifier.citedreferenceMaycox P. R., Hell J. W. and Jahn R. ( 1990 ) Amino Acid Neurotransmission: spotlight on synaptic vesicles. Trends Neurosci. 13, 83 – 87.en_US
dc.identifier.citedreferenceMcKenna M. C. ( 2007 ) The glutamate‐glutamine cycle is not stoichiometric: fates of glutamate in brain. J. Neurosci. Res. 85, 3347 – 3358.en_US
dc.identifier.citedreferenceMcKenna M. C., Stevenson J. H., Huan X. and Hopkins I. B. ( 2000 ) Differential distribution of the enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic mitochondria contributes to metabolic compartmentation in cortical synaptic terminals. Neurochem. Int. 37, 229 – 241.en_US
dc.identifier.citedreferenceMoriyama Y. and Yamamoto A. ( 1995 ) Vesicular L‐glutamate transporter in microvesicles from bovine pineal glands. J. Biol. Chem. 270, 22314 – 22320.en_US
dc.identifier.citedreferenceNaito S. and Ueda T. ( 1985 ) Characterization of glutamate uptake into synaptic vesicles. J. Neurochem. 44, 99 – 109.en_US
dc.identifier.citedreferenceOgita K., Hirata K., Bole D. G., Yoshida S., Tamura Y., Leckenby A. M. and Ueda T. ( 2001 ) Inhibition of vesicular glutamate storage and exocytotic release by Rose Bengal. J. Neurochem. 77, 34 – 42.en_US
dc.identifier.citedreferenceOtis T. S. ( 2001 ) Vesicular glutamate transporters in cognito. Neuron 29, 11 – 14.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.