Show simple item record

Optical fiber‐based in vivo quantification of growth factor receptors

dc.contributor.authorThomas, Thommey P.en_US
dc.contributor.authorChang, Yu‐chungen_US
dc.contributor.authorYe, Jing Yongen_US
dc.contributor.authorKotlyar, Alinaen_US
dc.contributor.authorCao, Zhengyien_US
dc.contributor.authorShukla, Rameshweren_US
dc.contributor.authorQin, Suyangen_US
dc.contributor.authorNorris, Theodore B.en_US
dc.contributor.authorBaker, James R.en_US
dc.date.accessioned2012-05-21T15:49:47Z
dc.date.available2013-06-11T19:15:53Zen_US
dc.date.issued2012-04-15en_US
dc.identifier.citationThomas, Thommey P.; Chang, Yu‐chung ; Ye, Jing Yong; Kotlyar, Alina; Cao, Zhengyi; Shukla, Rameshwer; Qin, Suyang; Norris, Theodore B.; Baker, James R. (2012). "Optical fiberâ based in vivo quantification of growth factor receptors ." Cancer 118(8): 2148-2156. <http://hdl.handle.net/2027.42/91221>en_US
dc.identifier.issn0008-543Xen_US
dc.identifier.issn1097-0142en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91221
dc.description.abstractBACKGROUND: Growth factor receptors such as epidermal growth factor receptor 1 and human epidermal growth receptor 2 (HER2) are overexpressed in certain cancer cells. Antibodies against these receptors (eg. cetuximab and transtuzumab [Herceptin]) have shown therapeutic value in cancer treatment. The existing methods for the quantification of these receptors in tumors involve immunohistochemistry or DNA quantification, both in extracted tissue samples. The goal of the study was to evaluate whether an optical fiber‐based technique can be used to quantify the expression of multiple growth factor receptors simultaneously. METHODS: The authors examined HER2 expression using the monoclonal antibody trastuzumab as a targeting ligand to test their system. They conjugated trastuzumab to 2 different Alexa Fluor dyes with different excitation and emission wavelengths. Two of the dye conjugates were subsequently injected intravenously into mice bearing HER2‐expressing subcutaneous tumors. An optical fiber was then inserted into the tumor through a 30‐gauge needle, and using a single laser beam as the excitation source, the fluorescence emitted by the 2 conjugates was identified and quantified by 2‐photon optical fiber fluorescence. RESULTS: The 2 conjugates bound to the HER2‐expressing tumor competitively in a receptor‐specific fashion, but they failed to bind to a similar cell tumor that did not express HER2. The concentration of the conjugate present in the tumor as determined by 2‐photon optical fiber fluorescence was shown to serve as an index of the HER2 expression levels. CONCLUSIONS: These studies offer a minimally invasive technique for the quantification of tumor receptors simultaneously. Cancer 2012;. © 2011 American Cancer Society. The paper describes the in vivo quantification of human epidermal growth receptor 2 using a minimally invasive 2‐photon optical fiber fluorescence detection technique. The proof of concept for the simultaneous in vivo quantification of multiple receptors is provided.en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherDouble‐Clad Optical Fiberen_US
dc.subject.otherHerceptinen_US
dc.subject.otherHER2en_US
dc.subject.otherGrowth Factor Receptor Quantificationen_US
dc.subject.otherCancer Targetingen_US
dc.subject.other2‐Photon Excitationen_US
dc.titleOptical fiber‐based in vivo quantification of growth factor receptorsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbsecondlevelOncology and Hematologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMichigan Nanotechnology Institute for Medicine and Biological Sciences and Department of Internal Medicine, University of Michigan, 9220 MSRB III, Box 0648, Ann Arbor, MI 48109en_US
dc.contributor.affiliationumCenter for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Internal Medicine, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherMichigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherDepartment of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texasen_US
dc.contributor.affiliationotherDepartment of Electrical Engineering, National Changhua University of Education, Changhua, Taiwanen_US
dc.identifier.pmid22488668en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91221/1/26487_ftp.pdf
dc.identifier.doi10.1002/cncr.26487en_US
dc.identifier.sourceCanceren_US
dc.identifier.citedreferenceWolff AC, Hammond ME, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med. 2007; 131: 18 ‐ 43.en_US
dc.identifier.citedreferenceSlamon DJ, Leyland‐Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001; 344: 783 ‐ 792; comment 2001;345:995‐997.en_US
dc.identifier.citedreferenceBaselga J, Perez EA, Pienkowski T, Bell R. Adjuvant trastuzumab: a milestone in the treatment of HER‐2‐positive early breast cancer. Oncologist. 2006; 11 ( suppl 1 ): 4 ‐ 12.en_US
dc.identifier.citedreferenceLewis F, Jackson P, Lane S, Coast G, Hanby AM. Testing for HER2 in breast cancer. Histopathology. 2004; 45: 207 ‐ 217.en_US
dc.identifier.citedreferenceFiuza M. Cardiotoxicity associated with trastuzumab treatment of HER2+ breast cancer. Adv Ther. 2009; 26 ( suppl 1 ): S9 ‐ S17.en_US
dc.identifier.citedreferenceSeidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002; 20: 1215 ‐ 1221; comment 1156‐1157, 4119; author reply 4120.en_US
dc.identifier.citedreferenceJones RL, Smith IE. Efficacy and safety of trastuzumab. Exp Opin Drug Safety. 2004; 3: 317 ‐ 327.en_US
dc.identifier.citedreferenceMarty M, Cognetti F, Maraninchi D, et al. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2‐positive metastatic breast cancer administered as first‐line treatment: the M77001 study group. J Clin Oncol. 2005; 23: 4265 ‐ 4274; comment 4247‐4250.en_US
dc.identifier.citedreferenceTedesco KL, Thor AD, Johnson DH, et al. Docetaxel combined with trastuzumab is an active regimen in HER‐2 3+ overexpressing and fluorescent in situ hybridization‐positive metastatic breast cancer: a multi‐institutional phase II trial. J Clin Oncol. 2004; 22: 1071 ‐ 1077.en_US
dc.identifier.citedreferenceRhodes A, Borthwick D, Sykes R, Al‐Sam S, Paradiso A. The use of cell line standards to reduce HER‐2/neu assay variation in multiple European cancer centers and the potential of automated image analysis to provide for more accurate cut points for predicting clinical response to trastuzumab. Am J Clin Pathol. 2004; 122: 51 ‐ 60; comment 2005;123:314; author reply 314‐315.en_US
dc.identifier.citedreferenceAllred DC, Swanson PE, Allred DC, Swanson PE. Testing for erbB‐2 by immunohistochemistry in breast cancer [comment]. Am J Clin Pathol. 2000; 113: 171 ‐ 175.en_US
dc.identifier.citedreferencePress MF, Hung G, Godolphin W, et al. Sensitivity of HER‐2/neu antibodies in archival tissue samples: potential source of error in immunohistochemical studies of oncogene expression. Cancer Res. 1994; 54: 2771 ‐ 2777.en_US
dc.identifier.citedreferencePerez EA, Suman VJ, Davidson NE, et al. HER2 testing by local, central, and reference laboratories in specimens from the North Central Cancer Treatment Group N9831 intergroup adjuvant trial. J Clin Oncol. 2006; 24: 3032 ‐ 3038.en_US
dc.identifier.citedreferenceJacobs TW, Gown AM, Yaziji H, Barnes MJ, Schnitt SJ. Specificity of HercepTest in determining HER‐2/neu status of breast cancers using the United States Food and Drug Administration‐approved scoring system. J Clin Oncol. 1999; 17: 1983 ‐ 1987; comment 3690‐3692.en_US
dc.identifier.citedreferenceRoche PC, Ingle JN. Increased HER2 with U.S. Food and Drug Administration‐approved antibody. J Clin Oncol. 1999; 17: 434; comment 1650, 2293‐2294.en_US
dc.identifier.citedreferencePauletti G, Dandekar S, Rong H, et al. Assessment of methods for tissue‐based detection of the HER‐2/neu alteration in human breast cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol. 2000; 18: 3651 ‐ 3664; comment Adv Anat Pathol. 2002;9:338‐344.en_US
dc.identifier.citedreferenceRoche PC, Suman VJ, Jenkins RB, et al. Concordance between local and central laboratory HER2 testing in the breast intergroup trial N9831. J Natl Cancer Inst. 2002; 94: 855 ‐ 857; comment 788‐789; 2003;95:628; author reply 628‐629.en_US
dc.identifier.citedreferencePaik S, Bryant J, Tan‐Chiu E, et al. Real‐world performance of HER2 testing—National Surgical Adjuvant Breast and Bowel Project experience. J Natl Cancer Inst. 2002; 94: 852 ‐ 854.en_US
dc.identifier.citedreferenceWolff AC, Hammond ME, Schwartz JN, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007; 25: 118 ‐ 145.en_US
dc.identifier.citedreferenceSchmitt F. HER2+ breast cancer: how to evaluate? Adv Ther. 2009; 26 ( suppl 1 ): S1 ‐ S8.en_US
dc.identifier.citedreferenceHicks DG, Tubbs RR. Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: a technical review with interpretive guidelines. Hum Pathol. 2005; 36: 250 ‐ 261.en_US
dc.identifier.citedreferenceBeatty BG, Bryant R, Wang W, et al. HER‐2/neu detection in fine‐needle aspirates of breast cancer: fluorescence in situ hybridization and immunocytochemical analysis. Am J Clin Pathol. 2004; 122: 246 ‐ 255.en_US
dc.identifier.citedreferenceSchmitt SJ, Jacobs TW. Current status of HER2 testing: caught between a rock and a hard place [comment]. Am J Clin Pathol. 2001; 116: 806 ‐ 810.en_US
dc.identifier.citedreferenceRoss JS, Fletcher JA, Bloom KJ, et al. Targeted therapy in breast cancer: the HER‐2/neu gene and protein. Mol Cel Proteomics. 2004; 3: 379 ‐ 398.en_US
dc.identifier.citedreferenceBartlett J, Mallon E, Cooke T. The clinical evaluation of HER‐2 status: which test to use [comment]? J Pathol. 2003; 199: 411 ‐ 417.en_US
dc.identifier.citedreferenceGordon PB. Image‐directed fine needle aspiration biopsy in nonpalpable breast lesions. Clin Lab Med. 2005; 25: 655 ‐ 678.en_US
dc.identifier.citedreferencePisano ED, Fajardo LL, Tsimikas J, et al. Rate of insufficient samples for fine‐needle aspiration for nonpalpable breast lesions in a multicenter clinical trial: the Radiologic Diagnostic Oncology Group 5 Study. The RDOG5 investigators. Cancer. 1998; 82: 679 ‐ 688.en_US
dc.identifier.citedreferenceHarris LN, You F, Schnitt SJ, et al. Predictors of resistance to preoperative trastuzumab and vinorelbine for HER2‐positive early breast cancer. Clin Cancer Res. 2007; 13: 1198 ‐ 1207.en_US
dc.identifier.citedreferenceXu AM, Huang PH. Receptor tyrosine kinase coactivation networks in cancer. Cancer Res. 2010; 70: 3857 ‐ 3860.en_US
dc.identifier.citedreferenceThomas TP, Ye JY, Yang C‐S, et al. Tissue distribution and real‐time fluorescence measurement of a tumor‐targeted nanodevice by a 2 photon optical fiber fluorescence probe. Proc SPIE. 2006; 60950Q1 – 60950Q7.en_US
dc.identifier.citedreferenceThomas TP, Myaing MT, Ye JY, et al. Detection and analysis of tumor fluorescence using a 2‐photon optical fiber probe. Biophys J. 2004; 86: 3959 ‐ 3965.en_US
dc.identifier.citedreferenceThomas TP, Ye JY, Chang YC, et al. Investigation of tumor cell targeting of a dendrimer nanoparticle using a double‐ clad optical fiber probe. J Biomed Opt. 2008; 13: 014024‐1 ‐ 014024‐6.en_US
dc.identifier.citedreferenceCho HS, Mason K, Ramyar KX, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003; 421: 756 ‐ 760.en_US
dc.identifier.citedreferenceDijkers EC, de Vries EG, Kosterink JG, Brouwers AH, Lub‐de Hooge MN. Immunoscintigraphy as potential tool in the clinical evaluation of HER2/neu targeted therapy. Curr Pharm Des. 2008; 14: 3348 ‐ 3362.en_US
dc.identifier.citedreferenceOude Munnink TH, Nagengast WB, Brouwers AH, et al. Molecular imaging of breast cancer. Breast. 2009; 18 ( suppl 3 ): S66 ‐ S73.en_US
dc.identifier.citedreferenceGiamas G, Man YL, Hirner H, et al. Kinases as targets in the treatment of solid tumors. Cell Signal. 2010; 22: 984 ‐ 1002.en_US
dc.identifier.citedreferenceAlvarez RH, Valero V, Hortobagyi GN. Emerging targeted therapies for breast cancer. J Clin Oncol. 2010; 28: 3366 ‐ 3379.en_US
dc.identifier.citedreferenceHede K. Gastric cancer: trastuzumab trial results spur search for other targets. J Natl Cancer Inst. 2009; 101: 1306 ‐ 1307.en_US
dc.identifier.citedreferenceTagliabue E, Balsari A, Campiglio M, Pupa SM. HER2 as a target for breast cancer therapy. Expert Opin Biol Ther. 2010; 10: 711 ‐ 724.en_US
dc.identifier.citedreferenceKoutras AK, Fountzilas G, Kalogeras KT, Starakis I, Iconomou G, Kalofonos HP. The upgraded role of HER3 and HER4 receptors in breast cancer. Crit Rev Oncol Hematol. 2010; 74: 73 ‐ 78.en_US
dc.identifier.citedreferenceGuo S, Colbert LS, Fuller M, Zhang Y, Gonzalez‐Perez RR. Vascular endothelial growth factor receptor‐2 in breast cancer. Biochim Biophys Acta. 2010; 1806: 108 ‐ 121.en_US
dc.identifier.citedreferenceMaass T, Thieringer FR, Mann A, et al. Liver specific overexpression of platelet‐derived growth factor‐B accelerates liver cancer development in chemically induced liver carcinogenesis. Int J Cancer. 2011; 128: 1259 ‐ 1268.en_US
dc.identifier.citedreferenceKong D, Wang Z, Sarkar SH, et al. Platelet‐derived growth factor‐D overexpression contributes to epithelial‐mesenchymal transition of PC3 prostate cancer cells. Stem Cells. 2008; 26: 1425 ‐ 1435.en_US
dc.identifier.citedreferenceZhang T, Sun HC, Xu Y, et al. Overexpression of platelet‐ derived growth factor receptor alpha in endothelial cells of hepatocellular carcinoma associated with high metastatic potential. Clin Cancer Res. 2005; 11 ( 24 pt 1 ): 8557 ‐ 8563.en_US
dc.identifier.citedreferenceCarvalho I, Milanezi F, Martins A, Reis RM, Schmitt F. Overexpression of platelet‐derived growth factor receptor alpha in breast cancer is associated with tumour progression. Breast Cancer Res. 2005; 7: R788 ‐ R795.en_US
dc.identifier.citedreferenceHynes NE, Dey JH. Potential for targeting the fibroblast growth factor receptors in breast cancer. Cancer Res. 2010; 70: 5199 ‐ 5202.en_US
dc.identifier.citedreferenceElbauomy Elsheikh S, Green AR, Lambros MB, et al. FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Res. 2007; 9: R23.en_US
dc.identifier.citedreferenceFreier K, Schwaenen C, Sticht C, et al. Recurrent FGFR1 amplification and high FGFR1 protein expression in oral squamous cell carcinoma (OSCC). Oral Oncol. 2007; 43: 60 ‐ 66.en_US
dc.identifier.citedreferenceTurner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010; 10: 116 ‐ 129.en_US
dc.identifier.citedreferenceCappuzzo F, Tallini G, Finocchiaro G, et al. Insulin‐like growth factor receptor 1 (IGF1R) expression and survival in surgically resected non‐small‐cell lung cancer (NSCLC) patients. Ann Oncol. 2010; 21: 562 ‐ 567.en_US
dc.identifier.citedreferenceLi R, Pourpak A, Morris SW. Inhibition of the insulin‐like growth factor‐1 receptor (IGF1R) tyrosine kinase as a novel cancer therapy approach. J Med Chem. 2009; 52: 4981 ‐ 5004.en_US
dc.identifier.citedreferenceMabuchi S, Morishige K, Kimura T. Use of monoclonal antibodies in the treatment of ovarian cancer. Curr Opin Obstet Gynecol. 2010; 22: 3 ‐ 8.en_US
dc.identifier.citedreferenceRoskoski J Jr. The ErbB/HER receptor protein‐tyrosine kinases and cancer. Biochem Biophys Res Commun. 2004; 319: 1 ‐ 11.en_US
dc.identifier.citedreferenceNahta R, Hortobagyi GN, Esteva FJ. Growth factor receptors in breast cancer: potential for therapeutic intervention. Oncologist. 2003; 8: 5 ‐ 17.en_US
dc.identifier.citedreferenceMoasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007; 26: 6469 ‐ 6487.en_US
dc.identifier.citedreferencePiccart‐Gebhart MJ, Procter M, Leyland‐Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2‐positive breast cancer. N Engl J Med. 2005; 353: 1659 ‐ 1672; comment 2005;353:1652‐1654; 2005;353:1734‐1736; 2006;354:640‐644.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.