Show simple item record

Concurrent enrollment in lecture and laboratory enhances student performance and retention

dc.contributor.authorMatz, Rebecca L.en_US
dc.contributor.authorRothman, Edward D.en_US
dc.contributor.authorKrajcik, Joseph S.en_US
dc.contributor.authorBanaszak Holl, Mark M.en_US
dc.date.accessioned2012-05-21T15:50:00Z
dc.date.available2013-07-01T14:33:06Zen_US
dc.date.issued2012-05en_US
dc.identifier.citationMatz, Rebecca L.; Rothman, Edward D.; Krajcik, Joseph S.; Banaszak Holl, Mark M. (2012). "Concurrent enrollment in lecture and laboratory enhances student performance and retention ." Journal of Research in Science Teaching 49(5): 659-682. <http://hdl.handle.net/2027.42/91231>en_US
dc.identifier.issn0022-4308en_US
dc.identifier.issn1098-2736en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/91231
dc.description.abstractLaboratories have been a cornerstone in teaching and learning across multiple scientific disciplines for more than 100 years. At the collegiate level, science laboratories and their corresponding lectures are often offered as separate courses, and students may not be required to concurrently enroll in both. In this study, we provide evidence that enrolling in an introductory laboratory concurrently with the corresponding lecture course enhances learning gains and retention in comparison to students who enroll in the lecture alone. We examined the impact of concurrent versus nonconcurrent enrollment on 9,438 students' withdrawal rates from and final grades in the general chemistry lecture at the University of Michigan at Ann Arbor using multiple linear and binary logistic regression analyses, respectively, at a significance level of 0.05. We found that concurrent enrollment in the lecture and laboratory positively impacts (1) the odds of retention in the lecture by 2.2 times on average and (2) final lecture grades by up to 0.19 grade points on a 4.0 scale for the lowest‐scoring students according to university‐level mathematics and chemistry placement exam scores. These data provide important results for consideration by curriculum advisors and course planners at universities that do not require concurrent enrollment in general chemistry as well as other science courses. In the face of current budget cuts that threaten to shorten or eliminate laboratory experiences altogether at multiple educational levels, this study demonstrates the value of laboratories in promoting science learning and retention. © 2012 Wiley Periodicals, Inc. J Res Sci Teach 49: 659–682, 2012en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherWithdrawal/Retention Rateen_US
dc.subject.otherLecture and Laboratoryen_US
dc.subject.otherGeneral Chemistryen_US
dc.subject.otherFinal Course Gradesen_US
dc.subject.otherConcurrent Enrollmenten_US
dc.subject.otherCollege/Universityen_US
dc.titleConcurrent enrollment in lecture and laboratory enhances student performance and retentionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelManagementen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbsecondlevelEducationen_US
dc.subject.hlbsecondlevelWomen's and Gender Studiesen_US
dc.subject.hlbsecondlevelEconomicsen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.subject.hlbtoplevelHumanitiesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelBusinessen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, Michigan 48109‐1055.en_US
dc.contributor.affiliationumDepartment of Statistics, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, Michigan 48109‐1055en_US
dc.contributor.affiliationotherInstitute for Research on Mathematics and Science Education, Michigan State University, East Lansing, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/91231/1/21016_ftp.pdf
dc.identifier.doi10.1002/tea.21016en_US
dc.identifier.sourceJournal of Research in Science Teachingen_US
dc.identifier.citedreferenceSeymour, E., & Hewitt, N. M. ( 1997 ). Talking about leaving: Why undergraduates leave the sciences. Boulder, CO: Westview Press.en_US
dc.identifier.citedreferenceNational Research Council. ( 1999 ). How people learn: Brain, mind, experience, and school. In J. D. Bransford, A. L. Brown, & R. R. Cocking (Eds.), Committee on developments in the science of learning. Washington, D.C.: National Academy Press.en_US
dc.identifier.citedreferenceNational Research Council. ( 2005 ). How students learn: Science in the classroom. In M. S. Donovan & J. D. Bransford (Eds.), Committee on how people learn: A targeted report for teachers. Washington, D.C.: The National Academies Press.en_US
dc.identifier.citedreferenceNational Research Council. ( 2006 ). America's lab report: Investigations in high school science. In S. R. Singer, M. L. Hilton, & H. A. Schweingruber (Eds.), Committee on high school science laboratories: Role and vision. Washington, D.C.: Board on Science Education, Center for Education. Division of Behavioral and Social Sciences and Education, The National Academies Press.en_US
dc.identifier.citedreferenceNicoll, G., & Francisco, J. S. ( 2001 ). An investigation of the factors influencing student performance in physical chemistry. Journal of Chemical Education, 78 ( 1 ), 99 – 102.en_US
dc.identifier.citedreferenceOliver‐Hoyo, M. T., Allen, D., Hunt, W. F., Hutson, J., & Pitts, A. ( 2004 ). Effects of an active learning environment: Teaching innovations at a research I institution. Journal of Chemical Education, 81 ( 3 ), 441 – 448.en_US
dc.identifier.citedreferencePascarella, E. T., & Terenzini, P. T. ( 2005 ). How college affects students: A third decade of research. San Francisco, CA: Jossey‐Bass.en_US
dc.identifier.citedreferencePaul, A. E. ( 1983 ). The comparative effects of teacher‐demonstration and self‐paced instruction on concept acquisition and problem‐solving skills of college level chemistry students. Journal of Research in Science Teaching, 20 ( 8 ), 795 – 801.en_US
dc.identifier.citedreferencePeterfreund, A. R., Rath, K. A., Xenos, S. P., & Bayliss, F. ( 2007–2008 ). The impact of supplemental instruction on students in STEM courses: Results from San Francisco State University. Journal of College Student Retention, 9 ( 4 ), 487 – 503.en_US
dc.identifier.citedreferenceRaghubir, K. P. ( 1979 ). Research reports: The laboratory‐investigative approach to science instruction. Journal of Research in Science Teaching, 16 ( 1 ), 13 – 17.en_US
dc.identifier.citedreferenceRenner, J. W., & Fix, W. T. ( 1979 ). Chemistry and the experiment in the secondary schools. Journal of Chemical Education, 56 ( 11 ), 737 – 740.en_US
dc.identifier.citedreferenceRichmond, G., & Striley, J. ( 1996 ). Making meaning in classrooms: Social processes in small‐group discourse and scientific knowledge building. Journal of Research in Science Teaching, 33 ( 8 ), 839 – 858.en_US
dc.identifier.citedreferenceSaunders, W. L., & Dickinson, D. H. ( 1979 ). A comparison of community college students' achievement and attitude changes in a lecture‐only and lecture‐laboratory approach to general education biological science courses. Journal of Research in Science Teaching, 16 ( 5 ), 459 – 464.en_US
dc.identifier.citedreferenceShavelson, R. J. ( 1996 ). Linear regression. In S. W. Wakely (Ed.), Statistical reasoning for the behavioral sciences ( 3rd ed.). Needham Heights, MA: Allyn & Bacon.en_US
dc.identifier.citedreferenceSpringer, L., Stanne, M. E., & Donovan, S. S. ( 1999 ). Effects of small‐group learning on undergraduates in science, mathematics, engineering, and technology: A meta‐analysis. Review of Educational Research, 69 ( 1 ), 21 – 51.en_US
dc.identifier.citedreferenceStevens, R., Soller, A., Cooper, M. M., & Sprang, M. ( 2004 ). Modeling the development of problem‐solving skills in chemistry with a web‐based tutor. Paper presented at the Seventh International Conference Proceedings, Intelligent Tutoring Systems, Maceió, Alagoas, Brasil.en_US
dc.identifier.citedreferenceStrenta, A. C., Elliott, R., Adair, R., Matier, M., & Scott, J. ( 1994 ). Choosing and leaving science in highly selective institutions. Research in Higher Education, 35 ( 5 ), 513 – 547.en_US
dc.identifier.citedreferenceSue, S., & Abe, J. ( 1988 ). Predictors of academic achievement among Asian American and white students (College Board Report No. 88‐11). Retrieved from The College Board website: http://professionals.collegeboard.com/profdownload/pdf/RR%2088‐11.pdfen_US
dc.identifier.citedreferenceTeixeira‐Dias, J. J. C., Pedrosa de Jesus, H., & Neri de Souza, F. ( 2005 ). Teaching for quality learning in chemistry. International Journal of Science Education, 27 ( 9 ), 1123 – 1137.en_US
dc.identifier.citedreferenceThe College Board. ( 2006 ). SAT‐ACT concordance tables. Retrieved from http://professionals.collegeboard.com/data‐reports‐research/sat/sat‐acten_US
dc.identifier.citedreferenceTien, L. T., Roth, V., & Kampmeier, J. A. ( 2002 ). Implementation of a peer‐led team learning instructional approach in an undergraduate organic chemistry course. Journal of Research in Science Teaching, 39 ( 7 ), 606 – 632.en_US
dc.identifier.citedreferenceTing, S.‐M. R., & Robinson, T. L. ( 1998 ). First‐year academic success: A prediction combining cognitive and psychosocial variables for Caucasian and African American students. Journal of College Student Development, 39 ( 6 ), 599 – 610.en_US
dc.identifier.citedreferenceTotten, S. ( 1991 ). Cooperative learning: A guide to research. New York, NY: Garland Publishing.en_US
dc.identifier.citedreferenceU.S. Department of Education National Center for Education Statistics. ( 2011 ). Digest of education statistics, 2010 (NCES 2011‐015), Chapter 3, Tables 199 and 235. Retrieved from http://nces.ed.gov/programs/digest/d10/ch_3.aspen_US
dc.identifier.citedreferenceWalvoord, B. E. ( 2004 ). Assessment clear and simple: A practical guide for institutions, departments, and general education. San Francisco, CA: Jossey‐Bass.en_US
dc.identifier.citedreferenceWasham, C. (2007, Autumn). Where's the lab?: American students miss out on hands‐on science. Chemistry.en_US
dc.identifier.citedreferenceWheatley, J. H. ( 1975 ). Evaluating cognitive learnings in the college science laboratory. Journal of Research in Science Teaching, 12 ( 2 ), 101 – 109.en_US
dc.identifier.citedreferenceWhite, B. Y., & Frederiksen, J. R. ( 1998 ). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16 ( 1 ), 3 – 118.en_US
dc.identifier.citedreferenceWilson, C. D., Taylor, J. A., Kowalski, S. M., & Carlson, J. ( 2010 ). The relative effects and equity of inquiry‐based and commonplace science teaching on students' knowledge, reasoning, and argumentation. Journal of Research in Science Teaching, 47 ( 3 ), 276 – 301.en_US
dc.identifier.citedreferenceWojcik, J. F. ( 1990 ). Chemistry service courses: Dispense with the lab ? Journal of Chemical Education, 67 ( 7 ), 587 – 588.en_US
dc.identifier.citedreferenceWolfe, R. N., & Johnson, S. D. ( 1995 ). Personality as a predictor of college performance. Educational and Psychological Measurement, 55 ( 2 ), 177 – 185.en_US
dc.identifier.citedreferenceWrensford, G., & Wrensford, L. ( 2003 ). Enhanced student learning of chemistry in a computer assisted environment. Reaching Through Teaching, 15, 32 – 42.en_US
dc.identifier.citedreferenceZimmerman, C. ( 2000 ). The development of scientific reasoning skills. Developmental Review, 20, 99 – 149.en_US
dc.identifier.citedreferenceAngel, S. A., & LaLonde, D. E. ( 1998 ). Science success strategies: An interdisciplinary course for improving science and mathematics education. Journal of Chemical Education, 75 ( 11 ), 1437 – 1441.en_US
dc.identifier.citedreferenceBailey, C., Kingsbury, K., Kulinowski, K., Paradis, J., & Schoonover, R. ( 2000 ). An integrated lecture‐laboratory environment for general chemistry. Journal of Chemical Education, 77 ( 2 ), 195 – 1199.en_US
dc.identifier.citedreferenceBaker, N., & Verran, J. ( 2004 ). The future of microbiology laboratory classes—Wet, dry or in combination ? Nature Reviews Microbiology, 2 ( 4 ), 338 – 342.en_US
dc.identifier.citedreferenceBanilower, E. R., Green, S., & Smith, P. S. ( 2004 ). Analysis of data of the 2000 National Survey of Science and Mathematics Education for the Committee on High School Science Laboratories (September). Chapel Hill, NC: Horizon Research.en_US
dc.identifier.citedreferenceBen‐Zvi, R., Hofstein, A., Samuel, D., & Kempa, R. F. ( 1976 ). The attitude of high school students towards the use of filmed experiments. Journal of Chemical Education, 53 ( 9 ), 575 – 577.en_US
dc.identifier.citedreferenceBowen, C. W. ( 2000 ). A quantitative literature review of cooperative learning effects on high school and college chemistry achievement. Journal of Chemical Education, 77 ( 1 ), 116 – 119.en_US
dc.identifier.citedreferenceBransford, J. D., & Schwartz, D. L. ( 1999 ). Rethinking transfer: A simple proposal with multiple implications. In A. Iran‐Nejad & P. D. Pearson (Eds.), Review of research in education, no. 24 (pp. 61 – 100 ). Washington, D.C.: American Educational Research Association.en_US
dc.identifier.citedreferenceBybee, R. W. ( 1970 ). The effectiveness of an individualized approach to a general education earth science laboratory. Science Education, 54 ( 2 ), 157 – 161.en_US
dc.identifier.citedreferenceCarnduff, J., & Reid, N. ( 2003 ). Enhancing undergraduate chemistry laboratories—Pre‐laboratory and post‐laboratory exercises. London, England: Royal Society of Chemistry.en_US
dc.identifier.citedreferenceCavagnetto, A. R. ( 2010 ). Argument to foster scientific literacy: A review of argument interventions in K‐12 science contexts. Review of Educational Research, 80 ( 3 ), 336 – 371.en_US
dc.identifier.citedreferenceCawley, J. J. ( 1992 ). Lecture or laboratory: Choosing between two “goods ”. Journal of Chemical Education, 69 ( 8 ), 642.en_US
dc.identifier.citedreferenceChin, C., & Osborne, J. ( 2010 ). Students' questions and discursive interaction: Their impact on argumentation during collaborative group discussions in science. Journal of Research in Science Teaching, 47 ( 7 ), 883 – 908.en_US
dc.identifier.citedreferenceColetta, V. P., Phillips, J. A., & Steinert, J. J. ( 2007 ). Interpreting force concept inventory scores: Normalized gain and SAT scores. Physical Review Special Topics—Physics Education Research, 3 ( 1 ), 010106.en_US
dc.identifier.citedreferenceCommittee on Prospering in the Global Economy of the 21st Century. ( 2007 ). Rising above the gathering storm: Energizing and employing America for a brighter economic future. Washington, D.C.: The National Academies Press.en_US
dc.identifier.citedreferenceCooper, M. M. ( 1994 ). Cooperative chemistry laboratories. Journal of Chemical Education, 71 ( 4 ), 307.en_US
dc.identifier.citedreferenceCooper, M. M. ( 1995 ). Cooperative learning: An approach for large enrollment courses. Journal of Chemical Education, 72 ( 2 ), 162 – 164.en_US
dc.identifier.citedreferenceCooper, M. M., Cox, C. T., Nammouz, M., Case, E., & Stevens, R. ( 2008 ). An assessment of the effect of collaborative groups on students' problem‐solving strategies and abilities. Journal of Chemical Education, 85 ( 6 ), 866 – 872.en_US
dc.identifier.citedreferenceCooper, M. M., & Kerns, T. S. ( 2006 ). Changing the laboratory: Effects of a laboratory course on students' attitudes and perceptions. Journal of Chemical Education, 83 ( 9 ), 1356 – 1361.en_US
dc.identifier.citedreferenceCreswell, J. W. ( 2008 ). Analyzing and interpreting quantitative data. In Educational research: Planning, conducting, and evaluating quantitative and qualitative research ( 3rd ed.). Upper Saddle River, NJ: Pearson Education.en_US
dc.identifier.citedreferenceDaempfle, P. A. ( 2003–2004 ). An analysis of the high attrition rates among first year college science, math, engineering majors. Journal of College Student Retention, 5 ( 1 ), 37 – 52.en_US
dc.identifier.citedreferenceDaugherty, T. K., & Lane, E. J. ( 1999 ). A longitudinal study of academic social predictors of college attrition. Social Behavior Personality: An International Journal, 27 ( 4 ), 355 – 361.en_US
dc.identifier.citedreferenceDiBiase, W. J., & Wagner, E. P. ( 2002 ). Aligning general chemistry laboratory with lecture at a large university. School Science Mathematics, 102 ( 4 ), 158 – 171.en_US
dc.identifier.citedreferenceDriver, R., Leach, J., Millar, R., & Scott, P. ( 1996 ). Young people's images of science. Buckingham, England: Open University Press.en_US
dc.identifier.citedreferenceDriver, R., Newton, P., & Osborne, J. ( 2000 ). Establishing the norms of scientific argumentation in classrooms. Science Education, 84 ( 3 ), 287 – 312.en_US
dc.identifier.citedreferenceDubravcic, M. F. ( 1979 ). Practical alternatives to laboratory in a basic chemistry course. Journal of Chemical Education, 56 ( 4 ), 235 – 237.en_US
dc.identifier.citedreferenceEdwards, J., Roberts, S., & Pitter, G. (2010, November). A formula for success in general chemistry: Increasing student performance in a barrier course. Paper presented at the National Symposium on Student Retention, Mobile, AL.en_US
dc.identifier.citedreferenceFayowski, V., & MacMillan, P. D. ( 2008 ). An evaluation of the supplemental instruction programme in a first year calculus course. International Journal of Mathematical Education in Science and Technology, 39 ( 7 ), 843 – 855.en_US
dc.identifier.citedreferenceFeldon, D. F., Timmerman, B. C., Stowe, K. A., & Showman, R. ( 2010 ). Translating expertise into effective instruction: The impacts of cognitive task analysis (CTA) on lab report quality and student retention in the biological sciences. Journal of Research in Science Teaching, 47 ( 10 ), 1165 – 1185.en_US
dc.identifier.citedreferenceField, A. P. ( 2009 ). Discovering statistics using SPSS (and sex, drugs and rock ‘n’ roll). London, England: Sage.en_US
dc.identifier.citedreferenceFincher, C. ( 1974 ). Is the SAT worth its salt? An evaluation of the use of the Scholastic Aptitude Test in the university system of Georgia over a thirteen‐year period. Review of Educational Research, 44 ( 3 ), 293 – 305.en_US
dc.identifier.citedreferenceGlynn, S. M., Taasoobshirazi, G., & Brickman, P. ( 2007 ). Nonscience majors learning science: A theoretical model of motivation. Journal of Research in Science Teaching, 44 ( 8 ), 1088 – 1107.en_US
dc.identifier.citedreferenceGoldstein, M. T., & Perin, D. ( 2008 ). Predicting performance in a community college content‐area course from academic skill level. Community College Review, 36 ( 2 ), 89 – 115.en_US
dc.identifier.citedreferenceHall, R. H., Collier, H. L., Thomas, M. L., & Hilgers, M. G. (2005, August). A student response system for increasing engagement, motivation, and learning in high enrollment lectures. Paper presented at the Americas Conference on Information Systems, Omaha, NE.en_US
dc.identifier.citedreferenceHausmann, R. G. M., Chi, M. T. H., & Roy, M. (2004, August). Learning from collaborative problem solving: An analysis of three hypothesized mechanisms. Paper presented at the Proceedings of the 26th Annual Cognitive Science Society, Chicago, IL.en_US
dc.identifier.citedreferenceHeller, P., & Hollabaugh, M. ( 1992 ). Teaching problem solving through cooperative grouping. Part 2: Designing problems and structuring groups. American Journal of Physics, 60 ( 7 ), 637 – 644.en_US
dc.identifier.citedreferenceHill, B. W. ( 1976 ). Using college chemistry to influence creativity. Journal of Research in Science Teaching, 13 ( 1 ), 71 – 77.en_US
dc.identifier.citedreferenceHoellwarth, C., Moelter, M. J., & Knight, R. D. ( 2005 ). A direct comparison of conceptual learning and problem solving ability in traditional and studio style classrooms. American Journal of Physics, 73 ( 5 ), 459 – 462.en_US
dc.identifier.citedreferenceHofstein, A., & Lunetta, V. N. ( 1982 ). The role of the laboratory in science teaching: Neglected aspects of research. Review of Educational Research, 52 ( 2 ), 201 – 217.en_US
dc.identifier.citedreferenceHofstein, A., & Lunetta, V. N. ( 2004 ). The laboratory in science education: Foundations for the twenty‐first century. Science Education, 88 ( 1 ), 28 – 54.en_US
dc.identifier.citedreferenceHogan, K. ( 1999 ). Thinking aloud together: A test of an intervention to foster students' collaborative scientific reasoning. Journal of Research in Science Teaching, 36 ( 10 ), 1085 – 1109.en_US
dc.identifier.citedreferenceHorton, P. B., Fronk, R. H., & Walton, R. W. ( 1985 ). The effect of writing assignments on achievement in college general chemistry. Journal of Research in Science Teaching, 22 ( 6 ), 535 – 541.en_US
dc.identifier.citedreferenceHutcheson, G., & Sofroniou, N. ( 1999 ). The multivariate social scientist: Introductory statistics using generalized linear models. London, England: Sage.en_US
dc.identifier.citedreferenceJohnson, D. W., & Johnson, R. T. ( 1989 ). Cooperation and competition: Theory and research. Edina, MN: Interaction Book.en_US
dc.identifier.citedreferenceKerner, N. K., & Penner‐Hahn, J. E. ( 2010 ). Collaborative investigations in general chemistry. Plymouth, MI: Hayden‐McNeil Publishing.en_US
dc.identifier.citedreferenceLederman, N. G. ( 1992 ). Students' and teachers' conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29 ( 4 ), 331 – 359.en_US
dc.identifier.citedreferenceLittle, R. J. A., & Rubin, D. B. ( 2002 ). Statistical analysis with missing data ( 2nd ed.). Hoboken, NJ: Wiley‐Interscience.en_US
dc.identifier.citedreferenceLong, D. D., McLaughlin, G. W., & Bloom, A. M. ( 1986 ). The influence of physics laboratories on student performance in a lecture course. American Journal of Physics, 54 ( 2 ), 122 – 125.en_US
dc.identifier.citedreferenceLumpe, A. T., & Staver, J. R. ( 1995 ). Peer collaboration and concept development: Learning about photosynthesis. Journal of Research in Science Teaching, 32 ( 1 ), 71 – 98.en_US
dc.identifier.citedreferenceMaltese, A. V., & Tai, R. H. ( 2011 ). Pipeline persistence: Examining the association of educational experiences with earned degrees in STEM among U.S. students. Science Education, 95 ( 5 ), 877 – 907.en_US
dc.identifier.citedreferenceMarshall, J. A., & Dorward, J. T. ( 2000 ). Inquiry experiences as a lecture supplement for preservice elementary teachers and general education students. American Journal of Physics, 68 ( S1 ), S27 – S36.en_US
dc.identifier.citedreferenceMartens, E. ( 2007 ). Communicating science to the first degree. ACS Chemical Biology, 2 ( 8 ), 501 – 503.en_US
dc.identifier.citedreferenceMcKinney, K. ( 2007 ). Enhancing learning through the scholarship of teaching and learning: The challenges and joys of juggling. Bolton, MA: Anker Publishing.en_US
dc.identifier.citedreferenceMeltzer, D. E. ( 2002 ). The relationship between mathematics preparation and conceptual learning gains in physics: A possible “hidden variable” in diagnostic pretest scores. American Journal of Physics, 70 ( 12 ), 1259 – 1268.en_US
dc.identifier.citedreferenceMillar, R. ( 2004 ). The role of practical work in the teaching and learning of science. Paper prepared for the Committee on High School Science Laboratories: Role and Vision. Available at: http://www7.nationalacademies.org/bose/millar_draftpaper_jun_04.pdf [accessed August 2010].en_US
dc.identifier.citedreferenceMinner, D. D., Levy, A. J., & Century, J. ( 2010 ). Inquiry‐based science instruction—What is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47 ( 4 ), 474 – 496.en_US
dc.identifier.citedreferenceNational Research Council. ( 1996 ). National science education standards. National Committee on Science Education Standards and Assessment. Washington, D.C.: Center for Science, Mathematics, and Engineering Education, National Academy Press.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.